Принцип работы дифференциала на автомобиле: для чего он нужен

Неисправности

Свободный дифференциал достаточно надёжен и сам не сломается. Но его очень часто ломает водитель своими паническими действиями при буксовании автомобиля.

Дело в том, что шестерёнки дифференциала работают на подшипниках скольжения, причём самых простейших. Они не рассчитаны на долгое и тяжёлое вращение под нагрузкой, когда крутится только одно колесо.

Антифрикционные шайбы перегреваются, зубья изнашиваются, появляются люфты и стуки, а при резкой остановке колеса, внезапно попавшего на асфальт после раскрутки, ломаются оси сателлитов и шлицевые соединения.

Ремонт чаще всего заключается в замене коробки дифференциала в сборе. Иногда можно поставить ремкомплект из шестерён и пальца с новыми регулировочными шайбами. Совсем редко обходятся только регулировкой подбором шайб.

Активные дифференциалы

Наиболее популярным и современным решением в области конструирования дифференциального узла стало изобретение активного дифференциала. Идея этого механизма в том, чтобы не тормозить полуоси и колёса, а напротив, разгонять их до большей скорости. С помощью электроники и фрикционных сцеплений колесо, бегущее по внешнему кругу, получает в разы больший момент, чем внутреннее.

Благодаря этому техническому решению прохождение крутых поворотов отличается легкостью и устойчивостью. Это обстоятельство сразу же взяли на вооружение производители спортивных автомобилей. Но до выхода в широкое производство этому типу дифференциалов ещё далеко.

Принцип работы

Крутящий момент от двигателя через коробку передач передаётся на корпус дифференциала. У заднеприводных автомобилей посредством карданного вала, при переднем приводе дифференциал обычно устанавливается внутри КПП, образующей в таком случае моноблок трансмиссии, из которого наружу выходят уже шарнирные полуоси к колёсным ступицам.

Далее характер работы зависит от траектории движения и наличия достаточных сцепных свойств дорожного покрытия.

При прямолинейном движении

Когда автомобиль движется прямолинейно по гладкой поверхности с твёрдым сухим покрытием, обе полуоси вращаются с одинаковой угловой скоростью. Полуосевые шестерни находятся в покое одна относительно другой, весь дифференциал сильно похож на монолитную конструкцию.

Сателлиты, будучи связанными через свои зубья с обеими полуосевыми шестернями, относительно своих осей не вращаются. Момент распределяется поровну между осями, если дифференциал симметричный и свободный, то есть лишён блокировок. Впрочем, с блокировками в таком идеальном случае будет то же самое.

При повороте

В повороте, а это обычный режим работы дифференциала, поскольку идеальных прямых в природе не существует, одно из колёс всегда будет вращаться быстрее. Сателлиты придут в движение относительно своих осей, но связь между полуосевыми шестернями и корпусом не утратят. То есть момент продолжит передаваться от корпуса к колёсам, причём всё в том же соотношении 50/50.

Это очень любопытно рассмотреть с точки зрения мощности. Момент одинаков, а скорость у внешнего от поворота колеса больше, то есть и мощность на него передаётся пропорционально большая.

И это неудивительно, так как чем больше скорость, тем выше потери, которые компенсируются добавкой мощности. При этом ни малейших помех вращению колёс с разной скоростью создаваться не будет, в отличие от жёсткой связи.

При пробуксовке

Гораздо менее приятно дела обстоят в том случае, когда одно из колёс попало на относительно скользкий участок дороги и сорвалось в пробуксовку при разгоне. Сцепления с дорогой нет, а значит момент сопротивления покрытия резко падает. Но этот момент всегда равен тяговому, это закон физики. Значит и тяговый момент упадёт.

Свободный симметричный дифференциал делит тягу пополам между колёсами. Всегда 50/50. То есть при падении момента на одном до нуля, на втором он обнулится автоматически. Автомобиль начнёт терять скорость, а если речь идёт о трогании с места на льду или жидкой грязи, то он просто там и останется, не сумев выехать из засады.

В этом главный недостаток свободного дифференциала. Он может передать усилие только то, которое способно переварить колесо, находящееся в худших условиях. Даже если второе будет на сухом чистом асфальте, автомобиль никуда не поедет. Вся энергия уйдет на быстрое и бесполезное вращение буксующего колеса.

Виды дифференциалов

Дифференциальные механизмы бывают нескольких разновидностей. Деление производят по определенным факторам.

В зависимости от геометрии шестерен, которые входят в состав устройства, оно может быть:

  • коническим;
  • цилиндрическим;
  • червячным.

Наиболее распространен 1-й тип.

По особенностям конструкции приспособление делят на следующие разновидности.

  • Традиционный (еще его называют свободным). Классическое устройство с минимумом конструктивных элементов, описанное выше.
  • Двойной. Более сложный вариант конструкции. По сути, имеет по дифференциалу на каждой полуоси, на которые крутящий момент поступает из редуктора.
  • Квайф. Более совершенная схема, которая была изобретена в 1965 году. Имеет на 1, а 5 пар сателлитов. Подвержена сильному износу со временем. Обеспечивает разделение крутящего момента почти в любых условиях передвижения.
  • Торсен. Червячный дифференциал, разработанный в 1950-х годах. Шестерни, которые находятся на полуосях, образуют с сателлитами червячную пару, которая и обеспечивает разницу вращения. Является одной из самых надежных конструкций, способной выдержать серьезные нагрузки. В настоящее время используется усовершенствованная версия Торсен.

В зависимости от типа корпуса устройство может быть:

  • открытым – в чашке имеются прорези, отверстия;
  • закрытым – чашка целостна, не имеет отверстий.

В зависимости от типа стабилизации работы устройства делят на следующие виды.

  • С дисковой блокировкой. Конструкция предусматривает наличие дисков, которые разобщают шестерни. В результате вращение колес выравнивается. Подобная механика особенно эффективна при пробуксовке.
  • Кулачковый. В данном случае шестерни разобщаются с помощью кулачковых муфт.
  • Вискомуфтный. В конструкции имеется так называемая вискомуфта – 2 блока, расположенных в вязкой жидкости. Одна соединен с ротором, вторая с полуосями. При существенной разнице во вращении блоков жидкость становится более вязкой. За счет этого скорость стабилизируется.

Перечисленные межосевые дифференциалы называют активными, поскольку они чувствительны к крутящему моменту и могут самостоятельно разобщать сателлиты.

Дифференциальные механизмы могут различаться и по реализации блокировки. Она бывает 2 видов.

  • Ручная. Осуществляется по команде водителя транспортного средства из салона авто.
  • Автоматическая (еще ее называют электронной). Блокировку здесь выполняет ЭБУ. Это происходит автоматически, без участия водителя, на основе показаний датчиков.

Типы устройств блокировки

Блокирующее устройство узла зависит от его типа и используемого механизма. Различные функции ограничены и определяют возможность их использования в межосевых или межколесных дифференциалах.

Кулачковое устройство блокировки

Принудительная блокировка происходит вручную через кулачковую муфту. Муфта полностью блокирует механизм и жестко соединяет его корпус с нагруженной полуосью. Кулачковый дифференциал приводится в действие приводами следующих типов:

  • механический;
  • гидравлический;
  • пневматический;
  • электрический.

Они включаются рычажным механизмом или специальной кнопкой на панели приборов (для электропривода).

Благодаря своей универсальности кулачковый дифференциал используется в межосевых и межколесных механизмах.

Самоблокирующейся дифференциал

Самоблокирующееся (автоматическое) дифференциальное устройство использует принцип увеличения сил трения при изменении условий нагрузки на полуоси ведущих колес. Отсюда и другое название — «дифференциал повышенного трения» или LSD (Limited Slip Differential).

Дифференциал повышенного трения имеет четыре основных варианта в зависимости от способа увеличения трения:

  • дисковый;
  • червячный;
  • вискомуфта;
  • электронная блокировка.

Дисковый

Дифференциал повышенного трения, в котором используется дисковая муфта, использует принцип автоматической блокировки при изменении угловых скоростей полуосей: чем больше их разница, тем выше степень перераспределения крутящего момента.

При использовании этого типа LSD между дисками возникает трение. Один фрикционный пакет имеет жесткое соединение с чашкой дифференциала, другие — с полуосями.

Фрикционные пакеты вращаются с одинаковой скоростью, когда ведущие колеса вращаются тоже, с одной и той же скоростью. При изменении угловой скорости диски ускоряющейся полуоси передают часть крутящего момента на вал другой полуоси (частичная блокировка) за счет увеличения силы трения с фрикционным пакетом корпуса (чашкой).

Степень сжатия в дисковом дифференциале может быть постоянной (за счет пружин) или переменной (гидравлически управляемой).

Червячный

Сателлиты и полуоси с червячной передачей в качестве привода часто используются для создания LSD, блокируемого в результате разности крутящих моментов.

Эта система LSD с червячным приводом известна как Torque Sensing или сокращенно — Torsen. Принцип работы червячной передачи чрезвычайно прост: увеличение крутящего момента на одной полуоси приводит к частичной блокировке и его передаче на другую полуось. В этом случае не требуются никакие дополнительные системы или агрегатов, червячный узел изначально является самоблокирующимся из-за свойств привода, в котором другие шестерни не могут приводить в движение червячную передачу. Червячный привод применяется в колесных и межосевых дифференциалах различных типов машин.

Вискомуфта

Вязкостная муфта состоит из набора близко расположенных перфорированных дисков, которые размещены в герметичном корпусе с силиконовой жидкостью и соединены с чашкой и приводным валом.

При одинаковых угловых скоростях устройство работает в штатном режиме. Его блокировка происходит при увеличении скорости вала: диски на нем увеличивают скорость и, перемешивая силикон и заставляют его затвердеть. Диски чашки получают и передают крутящий момент на другой вал, увеличивая его тяговое усилие.

LSD, блокирующую функцию которого выполняет вязкостная муфта, имеет большие габаритные размеры и применяется в межосевых дифференциалах. Вязкостная муфта также может использоваться как дифференциал полноприводного автомобиля и полностью выполняет его функции.

Однако у нее есть один серьезный недостаток: возможен перегрев и периодическая несовместимость с системой ABS. Это привело к тому, что вискомуфты используются в современных автомобилях крайне редко.

Электронная блокировка

Дифференциал повышенного трения, в котором используется электронная система блокировки, реагирует на изменение угловой скорости ведущих колес.

Дифференциал управляется программно. По мере увеличения скорости колеса в тормозной системе повышается давление, и его скорость уменьшается. Это увеличивает тяговое усилие и передает крутящий момент на другое колесо.

Таким образом, дифференциал не оборудован дополнительными элементами и не блокируется, то есть по сути это не LSD. Перераспределение крутящего момента и выравнивание угловых скоростей происходит под действием тормозной системы, управляемой антипробуксовочной системой.

Абсолютная и относительная погрешности приближенных вычислений

Пользуясь приближенным значением числа, нужно иметь возможность судить о степени его точности. С этой целью вычисляют его абсолютную и относительную погрешности.

Абсолютная погрешность приближенного числа равна абсолютной величине разности между точным числом и его приближенным значением:

                            (12)

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности этого числа к абсолютной величине соответствующего точного числа:

                                 (13)

Если точное число неизвестно, то

                             (14)

Иногда, прежде чем применить формулу (11), требуется предварительно преобразовать исходную величину. Как правило, это делается в двух целях. Во-первых, надо добиться, чтобы величина была достаточно малой по сравнению с , так как чем меньше , тем точнее результат приближенного вычисления. Во-вторых, желательно, чтобы величина вычислялась просто.

Пример 8. Пользуясь понятием дифференциала, вычислить приближенно . Оценить точность полученного результата.

Решение. Рассмотрим функцию

Её производная равна

а формула (11) примет вид

В данном случае было бы нерационально вычислять приближенно следующим образом:

так как значение

не является малым по сравнению со значением производной в точке

Здесь удобно предварительно вынести из под корня некоторое число, например 4/3.  Тогда

Теперь, полагая

получим

Умножая на 4/3, находим

Принимая табличное значение корня

за точное число, оценим по формулам (12) и (13) абсолютную и относительную погрешности приближенного значения:

Назад Листать Вперёд>>>

Весь блок «Производная»

  • Что такое производная
  • Найти производную: алгоритм и примеры решений
  • Производные произведения и частного функций
  • Производная суммы дробей со степенями и корнями
  • Производные простых тригонометрических функций
  • Производная сложной функции
  • Дифференциал функции
  • Дифференциал сложной функции, инвариантность формы дифференциала
  • Правило Лопиталя
  • Частные производные

Поделиться с друзьями

История создания и назначение дифференциала

На автомобилях, оснащенных двигателем внутреннего сгорания, дифференциал появился через несколько лет после их изобретения. Дело в том, что первые экземпляры машин, приводимых в действие двигателем, имели очень плохую управляемость. Оба колеса на одной оси при повороте вращались с одинаковой угловой скоростью, что приводило к пробуксовке колеса, идущего по внешнему, большему, чем внутренний, диаметру. Решение проблемы было найдено просто: конструкторы первых автомобилей с ДВС позаимствовали у паровых повозок дифференциал – механизм, изобретенный в 1828 году французским инженером Оливером Пекке-Ром.

Он представлял собой устройство, состоящее из валов и шестерней, через которые крутящий момент от двигателя передается на ведущие колеса. Но после установки на автомобиль дифференциала обнаружилась еще одна проблема – пробуксовка колеса, утратившего сцепление с дорогой. Обычно это проявлялось, когда автомобиль двигался по дороге, покрытой участками льда. Тогда колесо, попавшее на лед, начинало вращаться с большей скоростью, чем то, которое находилось на грунте или бетоне, что в итоге приводило к заносу автомобиля. Тогда конструкторы задумались об усовершенствовании дифференциала с тем, чтобы при подобных условиях оба колеса вращались с одинаковой скоростью и автомобиль не заносило. Первым, кто проводил эксперименты с созданием дифференциала с ограниченным проскальзыванием, стал Фердинанд Порше. Ему понадобилось три года, чтобы разработать, протестировать и выпустить на рынок так называемый кулачковый дифференциал – первый механизм с ограниченным проскальзыванием, который устанавливался на первые модели марки Volkswagen. Впоследствии инженеры разработали различные виды дифференциалов, о которых речь пойдет ниже. В автомобиле дифференциал выполняет три функции: 1) передает крутящий момент от двигателя к ведущим колесам, 2) задает колесам разные угловые скорости, 3) служит понижающей передачей в сочетании с главной передачей.

Дифференциал

Дифференциал представляет собой планетарный механизм, предназначенный для распределения вращающего момента между ведущими полуосями трактора или автомобиля и обеспечения вращения ведущих колес с различной частотой при движении по кривой или неровностям пути. На повороте, неровном пути ведущие колеса совершают движение по дугам разной длины. Если бы оба колеса были расположены на общем валу, то их движение сопровождалось бы скольжением, износом шин и поломками. Поэтому ведущие колеса устанавливают на отдельных валах — полуосях, соединенных дифференциалом.

Принцип действия дифференциала рассмотрим по схеме, изображенной на рисунке а. Шестерни — сателлит 7 (рисунок а) находится в зацеплении с рейками 6 и 8 (в реальной конструкции это шестерни 6 и 8). К оси 10 шестерни 7 приложена сила Р, стремящаяся переместить эту шестерню вверх.

Если сопротивление реек 6 и 8 перемещению силой Р одинаково, то на их зубья действуют равные силы Р/2 и рейки движутся вверх как единое целое с шестерней 7. Однако когда сопротивление движению одной из реек, например рейки 6, будет большим, чем рейки 8, шестерня 7 начинает вращаться вокруг своей оси и, перекатываясь по рейке 6, двигать рейку 8 вверх быстрее. При этом скорость движения рейки 8 увеличивается настолько, насколько уменьшается скорость движения рейки 6. Если сопротивление движению рейки 6 повысить так, что она остановился, то шестерня 7, перекатываясь по ней, увлечет за собой рейку 8 вверх, причем скорость движения рейки 8 будет в 2 раза больше скорости движения оси 10.

Теперь рассмотрим реальную схему дифференциала (рисунок б). В приливах корпуса 1 на оси 10 свободно установлена шестерня сателлит 7. Отверстия боковых приливов корпуса служат опорами полуосей 5 и 9 с укрепленными на них коническими полуосевыми шестернями 6 и 8, находящимися в зацеплении с сателлитом 7. Вращение к корпусу 1 дифференциала передается от ведомой шестерни 11 главной передачи. Если у полуосей 9 и 5 сопротивление вращению одинаково, то сателлит 7, заклиненный шестернями 6 и 8, неподвижен на оси 10 и вся система вращается как единое целое.

Если сопротивление вращению одной полуоси, например полуоси 9, будет больше, чем сопротивление полуоси 5, то сателлит 7, проворачиваясь на своей оси, замедлит вращение шестерни 8 я ускорит вращение шестерни 6, подобно тому как это было в примере с движением шестерни 7 и реек 6 и 8 (см. рисунок а).

Изменение дифференциалом частот вращения полуосей при колебаниях сопротивлений на колесах понижает проходимость трактора на увлажненной или рыхлой почве. В тяжелых почвенных условиях для повышения сцепных качеств колес дифференциал лучше выключить. Для этой цели на тракторах предусмотрены механизмы блокировки дифференциала, весьма разнообразные по конструкции.

Механизмы блокировки дифференциала

Механизмы блокировки дифференциала по способу включения делят на:

  • принудительные
  • автоматические
  • самоблокирующиеся

А по типу привода на:

  • механические
  • гидравлические

Принудительная (механическая) блокировка дифференциала возникает при сцеплении подвижной кулачковой муфты 4 (см. рисунок б), установленной на шлицах полуоси 5 трактора, с кулачками 2 на корпусе 1 дифференциала. В этом случае частоты вращения корпуса 7 дифференциала и полуоси 5 будут одинаковые, т.е. дифференциал будет заблокирован.

Механизм блокировки включают педалью (или рукояткой), а выключается он оттяжной пружиной, когда действие усилия, приложенного водителем, прекращается.

Автоматическая блокировка дифференциала позволяет водителю не затрачивать каких-либо усилий — процесс включения и выключения механизма происходит автоматически. Автоматическая блокировка дифференциала применяется на тракторах МТЗ-80, МТЗ-82, Т-150К и др.

Устройство дифференциала и принцип работы

Начнем с первого типа. Конический дифференциал зачастую выполнят функцию межколесного дифференциала. Цилиндрический дифференциал обычно встречается на полном приводе и ставится между осями. Червячный дифференциал универсален, что позволяет ставить механизм как между колесами, так и использовать в качестве межосевого.

При этом наиболее распространенным является конический дифференциал, а базовые элементы его конструкции активно используются и в устройстве других типов дифференциалов. По этой причине рассмотрим устройство и принцип работы конического дифференциала в качестве примера.

Итак, конический дифференциал, как уже было сказано выше, фактически является планетарным редуктором. В конструкцию включены полуосевые шестерни и сателлиты, которые находятся в корпусе (чашке дифференциала).

Сами сателлиты, которые реализуют функцию планетарной шестерни, позволяют соединить корпус и полуосевые шестерни. С учетом того, какую величину крутящего момента нужно передать, в конструкцию дифференциала могут интегрировать 2 или 4 четыре сателлита.

Солнечные (полуосевые шестерни) осуществляют передачу крутящего момента на ведущие колеса автомобиля. Передача происходит через полуоси, соединение полуосевых шестерен и полуосей выполнено через шлицы.

В первом случае симметричный дифференциал позволяет распределять крутящий момент по осям в равной степени, причем независимо от величины угловых скоростей ведущих колес.

Такой дифференциал используют для установки между колесами (симметричный межколесный дифференциал). Несимметричный дифференциал способен разделять крутящий момент в том или ином соотношении. Данная особенность позволяет использовать его между ведущими осями.

Теперь перейдем к принципам работы дифференциала. Прежде всего, симметричный дифференциал работает в трех основных режимах. Первый режим – движение по прямой, второй — движение в повороте, третий — езда по дорогое с плохим сцеплением (грязь, лед и т.д.).

Когда автомобиль движется прямо, колеса испытывают равнозначное сопротивление. Происходит передача крутящего момента от главной передачи на корпус дифференциала. Вместе с корпусом перемещаются сателлиты, которые, в свою очередь, осуществляют передачу момента на ведущие колеса.

Однако если машина заходит в поворот, колесо, которое находится ближе к центру (внутреннее ведущее) нагружается сильнее и начинает испытывать большее сопротивление сравнительно с наружным колесом (дальним от центра поворота).

В результате роста нагрузки внутренняя полуосевая шестерня несколько замедляет вращение, а это приводит к тому, что сателлиты начинают вращаться вокруг своей оси. Такое вращение сателлитов приводит к увеличению частоты вращения наружной полуосевой шестерни.

На практике возможность движения ведущих колес с разными угловыми скоростями делает возможным прохода поворота без пробуксовок. Кстати, крутящий момент все равно распределяется на ведущие колеса равнозначно.

Если же автомобиль забуксовал в грязи, в снегу или на льду, одно колесо испытывает большее сопротивление, чем другое. В этом случае дифференциал (благодаря своей конструкции) инициирует ускоренное вращение буксующего колеса, тогда как другое колесо замедляется.

Выходом из ситуации становится необходимость увеличения крутящего момента на колесе, которое не буксует. Для этого дифференциал необходимо заблокировать. По этой причине внедорожники имеют дополнительную возможность блокировки дифференциала, тогда как легковые авто и даже некоторые современные бюджетные «паркетники» лишены такой функции.

Устройство и принцип работы механической коробки передач. Виды механических коробок (двухвальная, трехвальная), особенности, отличия

Автоматическая коробка передач (АКПП, АКП) «классического» типа с гидротрансформатором: устройство и принцип работы. Плюсы и минусы гидромеханической АКПП.

Передачи включаются туго или не включаются скорости на механической коробке передач: основные причины неисправности и возможные неполадки.

Коробка передач «механика»: основные плюсы и минусы данного типа КПП, принцип работы механической трансмиссии автомобиля (МКПП).

Стыковка коробки передач и двигателя автомобиля

Соединение механической и автоматической трансмиссии с ДВС: на что обратить внимание, особенности и нюансы

Что такое КПП в автомобиле: назначение коробки передач, виды коробок передач, принцип работы, отличительные особенности трансмиссий.

Дифференциал цен

Ценовая дискриминация или ценовое дифференцирование – это стратегия ценообразования, где абсолютно идентичные или в основном подобные товары или услуги проведены по различным ценам тем же самым поставщиком на различных рынках сбыта или территориях. Ценовое дифференцирование отличают от дифференцирования продукта более существенными различиями. Скачки ценового дифференциала,  термин оценка (цена) дифференциала также используется, чтобы описать практику начисления различных цен различным покупателям по тому же самому качеству и количеству продукта, но это может также относиться к комбинации ценового дифференцирования и дифференцирования продукта. Другие термины, использованные, чтобы относиться к ценовой дискриминации, включают оценку акции, предпочтительную оценку и расположенную ярусами оценку.

Дифференциал как часть трансмиссии

Дифференциал в автомобиле — это механизм, распределяющий крутящий момент карданного вала трансмиссии между ведущими колесами передней или задней оси (в зависимости от типа привода), позволяя каждому из них вращаться без пробуксовки. В этом заключается основное назначение дифференциала.


Ведуший мост с дифференциалом в разрезе

При прямолинейном движении, когда колеса нагружены одинаково и имеют равную угловую скорость вращения – механизм работает в качестве передаточного звена. Если условия движения изменяются (поворот, пробуксовка) – нагрузка становится неравномерной. У полуосей появляется необходимость вращаться с разными скоростями, и, как следствие, становится необходимым распределить полученный крутящий момент между ними в определенном соотношении. Тогда узел выполняет вторую важную функцию: обеспечение безопасного маневрирования автомобиля.

Схема расположения дифференциала зависит от типа привода автомобиля:

  1. Передний привод – картер коробки передач.
  2. Задний привод – корпус ведущего моста.
  3. Полный привод – корпусы переднего и заднего мостов (для передачи крутящего момента ведущим колесам) или раздаточная коробка (для передачи крутящего момента ведущим мостам).

Дифференциал на автомобилях появился не сразу. Конструкторы первых «самодвижущихся экипажей» были очень озадачены плохой маневренностью своих изобретений. Вращение колёс с одинаковой угловой скоростью во время прохождения поворота приводило к тому, что одно из них начинало буксовать или, наоборот, полностью теряло контакт с дорогой. Инженеры вспомнили, что на ранних прототипах первых автомобилей, снабжаемых паровыми двигателями, было устройство, позволявшее избежать потери управляемости.

Механизм распределения вращающего момента изобрёл француз Онесифор Пеккёр. В устройстве Пеккёра присутствовали валы и шестерни. Через них крутящий момент от мотора поступал к ведущим колёсам. Но даже после применения изобретения Пёккера проблема пробуксовки колёс на поворотах не решилась полностью. Выявились недостатки системы. Например, одно из колес в какой-то момент терял сцепление с дорогой. Сильнее всего это проявлялось на обледенелых участках.

Пробуксовка в таких условиях часто приводила к авариям, поэтому конструкторы надолго задумались над тем, как предотвратить занос машины. Решение было найдено Фердинандом Порше. Он стал изобретателем кулачкового механизма, который ограничивал проскальзывание колёс ведущего моста. Немецкое устройство дифференциала нашло применение в автомобилях Volkswagen.

https://youtube.com/watch?v=3mz1BpIE-Ec

Первая необходимость

Теперь уже немного понятно, что такое дифференциал – это, своего рода, разновидность планетарной передачи. Но в чем заключается его необходимость? Данным агрегатом автомобили оснащаются не просто так, для этого есть весомый повод. И чтобы в этом разобраться, необходимо знать некоторую особенность.

При вхождении автомобиля в поворот, в особенности затяжной (движение по кольцу), его колеса проходят разный путь. Но поскольку в отсутствие дифференциала они связаны между собой жестко, то одно из колес будет неизбежно проскальзывать, не поспевая за другим. Стоит заметить, что внешнее колесо проходит более длинный путь, чем внутреннее. В связи с этим оно и вращаться должно быстрее, что позволит сохранить стабильность транспортного средства на дороге.

В чем может быть проблема? Вот здесь мы и подходим к сути и пониманию, что такое дифференциал. Это механизм, который позволяет избежать многих нюансов. Из-за того, что внутреннее колесо пробуксовывает, есть свои нежелательные последствия. Для автомобилей с задним приводом это может привести к заносу, а переднеприводное транспортное средство рискует потерять контроль управления при входе в поворот.

Устранить проблему можно, обеспечив разное вращение колесам. Собственно, для этого и было создано такое незамысловатое шестеренчатое устройство, как дифференциал.