Основные аспекты ремонта систем впрыска k и ke-jetronic

Содержание

Системы впрыска

Инжектор представляет собой форсунку, разбрызгивающую топливо мелкими каплями. От него цилиндры двигателя получают «коктейль» из бензиновых паров и воздуха. Автомашины с такой схемой питания, в том числе Audi 80, именуются инжекторными. Есть два типа инжекторов, работающих по принципу:

  • моновпрыска (одна форсунка, находящаяся на том месте, где в других авто стоит карбюратор, «обслуживающая» все цилиндры);
  • многоточечного впрыска (по одной форсунке на каждый цилиндр).

Первые практически себя изжили в Европе ввиду не соответствия современным экологическим требованиям Евросоюза. Сегодня в нормах ЕС на каждый цилиндр требуют отдельную дозировку бензина. Хотя система моновпрыска проста и надежна. Она по-прежнему пользуется большой популярностью на территории бывшего Советского Союза. Вместе с тем низкое качество бензина на постсоветском пространстве делает свое черное дело. Впрыск из-за некачественного топлива начинает ломаться, а починить его дело весьма сложное. Очень многие, особенно в провинции, были вынуждены избавиться от Ауди 80. Причина: отсутствие возможности исправить механическую систему впрыска. Пересели на другие иномарки, и даже отечественные ГАЗ и ВАЗ…

Достоинства и недостатки

Так может стоит вместо механического впрыска поставить на Ауди 80 карбюратор? Снять его с ВАЗа для этих целей…

Специалисты утверждают, что, хотя карбюратор и инжектор имеют набор фактически одинаковых функций, последний предпочтительнее. Он:

  • экономит топливо;
  • упрощает процесс зажигания;
  • не нуждается, в отличие от карбюратора, в ручной регулировке впрыска;
  • более экологически чистый, так как минимизирует выброс несгоревших углеводородов.

А у того же самого ВАЗа из-за карбюратора иногда возникают проблемы со въездом в Европу. Справедливости ради уточним, что такое бывает редко. Лишь в случае, когда из выхлопной трубы ВАЗа валит черный дым. Но бывает… Именно поэтому многие предпочитают покупать ВАЗ с инжектором, которые также начали устанавливать на этой марки автомобиля.

Есть у инжектора и недостатки. Куда же без них. К таковым можно отнести:

  • необходимость использования высококачественного (дорогого) топлива;
  • непригодность элементов к ремонту (их надо лишь менять);
  • дороговизна комплектующих.

Механическая система впрыска уходит в историю. Недавно корпорация «Bosch» отказалась от выпуска некоторых комплектующих к механическим инжектором. Такое решение привело к подорожанию оставшихся деталей в разы и их дефициту.

Виды механических инжекторов

Общее понятие

Любая топливная система предназначена для бесперебойной подачи горючей смеси в камеры сгорания двигателя. В нашем случае инжекция или принудительный впрыск бензина осуществляется механическим инжектором. Изменение какого-либо из параметров, необходимых для приготовления топливовоздушной смеси, представляется возможным отследить, применяя механическую передачу сигнала. Кроме того, нужные вычисления и реализация законов регулирования (смесеобразования) осуществляются посредством механических устройств. Использование электрических сигналов в этой системе сведено к минимуму, а порой и совсем исключено. Механический инжектор применялся на автомобилях Ауди 100.

Какие бывают механические инжекторы

Эта система, как и любое устройство, по своей конструкции не оставалась постоянной и со временем претерпевала некоторые изменения. Обусловлено это желанием конструкторов автомобиля сделать его лучше.

  • К-джетроник;
  • КЕ-джетроник;
  • КЕ3-джетроник.

Как показал опыт эксплуатации, это не только не улучшило, а, наоборот, ухудшило эксплуатационные показатели, ввиду чего, производители были вынуждены отказаться от такой модернизации. К-джетроник является исторически первой модификацией и исключает наличие электронных устройств насколько это возможно. КЕ- и КЕ3-джетроник представляют собой гибриды или разновидности К-джетроник, снабжённые электронными устройствами.

Рассмотрим подробнее конструкцию и принцип работы К-джетроник.

L-Jetronic (1974–1989)

Аналоговый впрыск топлива. L-Jetronic часто называют воздушным потоком Controlled (АФК) впрыска для дальнейшего отделить его от давления контролируемой D-Jetronic — с «L» в его названии , полученного из немецкого : Luft , что означает «воздух». В системе поток воздуха в двигатель измеряется подвижной заслонкой (показывающей нагрузку на двигатель), известной как датчик объемного расхода воздуха (VAF) — в документации на немецком языке он называется LuftMengenMesser или LMM . L-Jetronic использовала специально разработанные интегральные схемы , что привело к созданию более простого и надежного блока управления двигателем (ЭБУ), чем у D-Jetronic.

L-Jetronic широко использовался в европейских автомобилях 1980-х годов , а также в мотоциклах BMW K-Series . Лицензируя некоторые концепции и технологии Bosch L-Jetronic, Lucas , Hitachi Automotive Products , NipponDenso и другие производили аналогичные системы впрыска топлива для азиатских производителей автомобилей. L-Jetronic, производимый по лицензии компанией Japan Electronic Control Systems, был установлен на Kawasaki Z1000-H1 1980 года, первый в мире мотоцикл с системой впрыска топлива. Несмотря на физическое сходство между компонентами L-Jetronic и теми, которые производятся по лицензии другими производителями, системы сторонних производителей не следует называть L-Jetronic, и эти части обычно несовместимы.

Загрязнение дозатора

Внутри дозатора находятся фильтрующие топливные сетки. При длительной эксплуатации автомобиля возможно загрязнение сеток с ухудшением прохождения топлива через них. На больших оборотах бензина будет не хватать, двигатель не сможет развить максимальную мощность.

Рисунок 24 — сетки перед плунжером и форсунками

Существующие методики промывки дозатора несовершенны. Они или требуют частичной разборки дозатора или качество промывки оставляет желать лучшего. Предлагаю методику промывки дозатора возможно, не минимальными средствами, но с минимальной разборкой и максимально возможным качеством. Для этого понадобится бензонасос б/у (в Москве на разборках стоит до 1000 рублей), расширительный бачок ВАЗ 2109 и три шланга с переходниками. Все, изготовленное вами, неоднократно пригодится в будущем (возможно и не на вашей нынешней машине).

Рисунок 25 — установка для промывки инжектора

Промывку следует вести жидкостями типа «Winn’s» или «Carbon clean».

Предварительно необходимо отключить напряжение питания штатного насоса. После того, как вы собрали установку, заведите машину и дайте ей поработать 15 минут. Затем надо выключить зажигание и подождать 15 минут для того, чтобы жидкость отъела отложения внутри дозатора. Снова заведите машину и периодически подгазовывайте. Вибрация при подгазовке помогает отслоиться отложениям от стенок. После промывки следует заменить свечи.

Преимущества подобного метода промывки трудно переоценить:

  • Промывается вся система впрыска полностью, включая форсунки
  • Промываются камера сгорания, клапана и кольца, удаляется нагар

Конструкция системы распределенного впрыска KE-Jetronic

В ее конструкции просматривается сосредоточенность на имплантации добавочных компонентов:

  • Электронного блока, упорядочивающего процесс впрыска;
  • Электрогидравлического регулятора (задатчика) давления (ЭГЗД);
  • Контроллера давления мембранного типа;
  • Воздушного расходомера с датчиком, дополненным потенциометром, фиксирующим положение ротаметра.

Причем в том, какие из величин станут рассматриваться в качестве входных параметров для правильного функционирования электронного блока, просматривается явная зависимость от разновидности силового агрегата.

Среди них могут оказаться от четырех до одиннадцати разнообразных механических величин, преобразуемых в электронные импульсы. Это могут быть показания датчиков, ответственных за фиксацию:

  • Уровня разогрева двигателя;
  • Насыщенности смеси кислородом;
  • Скорости оборотов коленчатого вала и его относительного положения;
  • Крайней позиции заслонки дросселя;
  • Загруженности мотора, измеряемой по относительному угловому позиционированию ротаметра в воздухомере;
  • Расположения автомобиля относительно уровня моря;
  • Ряда других параметров.

Все части системы ориентированы на гарантию достижения автоматического и качественного смесеобразования во всех режимах работы силовой установки. Именно наличие многочисленных датчиков и заложенная в систему программа позволяют в значительной степени упростить достижение поставленной задачи.

Чтобы понять суть привнесенных изменений, рассмотрим функциональные особенности и предназначение введенных в конструкцию элементов.

Отметим, что главным следствием изменяющегося форсуночного давления в двигателе, оборудованном распределенным впрыском, оказывается изменение объема распыляемого форсункой топлива. В KE-Jetronic качество топливной смеси определяется работой электрогидравлического регулятора давления.

В данном случае он функционирует, замещая собой регулятор управляющего давления. По сути, он являет собой электроуправляемый клапан, изменяющий уровень подпорного давления. Проводя аналогию с предшественницей – системой K-Jetronic, давление в данном случае будет подводиться не к самому плунжеру (золотнику), а к клапанам распределительного дозатора.

Задатчик и его электромагнитная компонента спроектированы таким образом, чтобы объем бензина, протекающий через жиклер регулятора, был пропорционален величине силы тока, проходящего по катушке управляющего электромагнита.

В KE-Jetronic применен электронный управляющий блок, с реализованным в нем аналоговым принципом работы. Возникающие в датчиках электронные импульсы поступают на него, обрабатываются согласно вшитой программе, и затем, в виде исходящих сигналов, возвращаются к исполнительным устройствам:

  • На задатчик давления (ЭГЗД);
  • На пусковую форсунку впрыска;
  • На клапаны выравнивания холостого хода подсистемы, нейтрализующей воздействие бензиновых паров.

В качестве устройства, главной функциональной задачей которого является поддержание необходимого давления в распределяющем дозаторе, используется регулятор давления мембранного типа. Его технологически обоснованным местом установки является возвратная магистраль системы.

Чтобы устранить очевидный недостаток, возникающий из-за ограниченности регулировочного диапазона вакуумных регуляторов, используются введенные в их конструкцию вакуумные камеры, однако в KE-Jetronic их функция по корректировке состава смеси возлагается на потенциометрический датчик, размещаемый в воздушном расходомере.

Именно с его помощью фиксируются углы, на которые проворачивается напорный диск. Электронный блок управления воспринимает изменение величины этого угла как сигнал о том, что изменяется нагрузка мотора. Таким образом, расходомер, оборудованный таким датчиком, существенно обогащает сферу использования регулятора давления мембранного типа.

Как упоминалось, количество входных датчиков может колебаться от 4ех до 11ти, а число обрабатываемых вычислительным блоком сигналов будет существенно влиять на качество управления двигателем.

Устройство системы K-jetronic

  • Традиционной дроссельной заслонкой;
  • Воздушным расходомером;
  • Топливным дозатором-распределителем;
  • Регулятором, управляющим давлением;
  • Пусковой форсункой;
  • Впрыскивающими форсунками;
  • Термическим реле;
  • Клапаном добавочного воздуха.

Назначение дроссельной заслонки, которая управляется с помощью механического привода, связывающего ее с педалью акселератора (газа), заключается в регулировании подачи объема воздуха, идущего на образование рабочей топливной смеси.

При помощи воздушного расходомера осуществляется замер порций воздуха, отмеряемых за счет пропорционального смещения напорного диска, соединенного системой из двух рычагов с поршнем дозаторного распределителя.

После открывания заслонки дросселя во впускной коллектор поступает ограниченный объем воздуха, смещающий нагнетательный (напорный) диск, зафиксированный на рычаге. На этом же рычаге, через ось, закреплен упорный рычаг поршня распределения топлива, роликом опирающийся на поршень и имеющий на своем конце винт регулирования качества подготавливаемой к впрыску смеси.

Распределительный дозатор служит для реализации перераспределения полученной смеси топлива с воздухом по форсункам при разнообразных двигательных нагрузках. Поскольку снизу на поршень оказывается воздействие со стороны рычага напорного диска, а сверху – давление, создаваемое в регуляторе управляющего давления, согласующим результатом этих воздействий оказывается подготовка топливно-воздушной смеси в стехиометрическом соотношении (1 к 14.7), необходимом для качественной работы катализатора. Следствием использования такого конструкционного решения оказывается увеличенный срок его службы.

Вместе с тем регулятор, управляющий давлением, служит для сохранения в системе неизменного по своей величине давления топлива. Он создает необходимые условия для поддержания подпорного давления на верхушке плунжера, вследствие чего создаются предпосылки для формирования обогащенной, либо обедненной воздушно-топливной смеси. Что, в свою очередь, гарантирует безотказную работу двигателя в различных режимах, в частности:

  • при его холодном запуске;
  • при прогреве в режиме холостого хода;
  • при пиковой нагрузке.

Чтобы добиться беспроблемного запуска двигателя в условиях пониженных наружных температур (менее 10 °C), система K-Jetronic содержит два конструкционных элемента: пусковую форсунку и клапан добавочного воздуха.

Благодаря наличию форсунки пуска, когда двигатель только запускается или работает в режиме прогрева на холостых оборотах, осуществляется подача дополнительной порции топлива во впускной коллектор двигателя. Работает эта форсунка в паре с термическим реле, которое исполняет ее управляющую роль.

Термореле монтируется на блоке цилиндров силового агрегата и служит для контроля температуры охлаждающей жидкости, циркулирующей по его рубашке. Как понятно из вышесказанного, при низкой температуре окружающего воздуха, реле подает сигнал на пусковую форсунку. При достижении запрограммированного уровня температуры охлаждающей жидкости форсунка прекращает свою работу.

Для того, чтобы обеспечить постоянную подачу топлива под давлением, используются индивидуальные для каждого цилиндра форсунки впрыска.

Клапан добавочного воздуха служит для подачи дополнительной воздушной порции, когда осуществляется запуск мотора без задействования дроссельной заслонки. При холодном двигателе клапан полностью открыт, как только мотор начинает прогреваться, клапан, под воздействием биметаллической пластины, связанной с клапанной диафрагмой, постепенно прикрывается вплоть до полного перекрытия подачи воздуха.

В качестве регулировочных инструментов холостого хода завод-производитель силовой установки использует специальные регулировочные винты:

  • Первый из них используется для установки частоты вращения коленчатого вала при холостом ходе;
  • Второй – для регулирования качественных характеристик смеси, влияющих на концентрацию в выхлопе угарного газа.

Измерение и регулировка давления в нижних камерах дозатора (измерение и регулировка дифдавления)

Дифдавление является базовым параметром, от которого зависит работа всей системы, поэтому регулировать дифдавление надо исключительно осторожно. Так как дифдавление выставляется относительно системного, мы должны быть уверены, что системное давление безупречно на любых оборотах

Так как дифдавление выставляется относительно системного, мы должны быть уверены, что системное давление безупречно на любых оборотах.

Рисунок 22 — Отверстие для измерения дифдавления

Дифдавление мы измеряем, подключив манометр согласно рис.22. Измерение проводится на работающей машине. На самых старых КЕ (двигатели AUDI типа JN, KZ, где ток управления ЭГРД меняется от 0 до 20 мА и «нулевая» точка регулирования приходится на +10мА) необходимо прогреть двигатель свыше 80 градусов и отключить ЛЗ. На более современных КЕ необходимо отключить разъем с ЭГРД (тогда двигатель можно не прогревать) или ЛЗ (на прогретом свыше 80 градусов двигателе). Это надо сделать для устранения влияния тока ЭГРД на дифдавление при измерении.

Первоначально нам необходимо выставить дифдавление равным 0.4 атм. (то есть ниже системного на 0.4 атм.). Для машин без лямбда-зонда (ЛЗ) этим стоит и ограничиться, а с ЛЗ надо провести следующие операции (после разогрева двигателя до температуры свыше 80 градусов):

1. Подключить разъем к ЭГРД (или ЛЗ, если отключали его).
2. Измерить ток управления ЭГРД на оборотах около 3000.
3. При отклонении тока от нуля вновь подрегулировать ЭГРД, добиваясь того, чтобы ток управления ЭГРД на этих оборотах был близок нулю.
4. Измерить ток управления ЭГРД на оборотах ХХ.
5. При отклонении тока от нуля подрегулировать СО винтом регулировки, добиваясь того, чтобы ток управления ЭГРД на оборотах ХХ был близок к нулю.

Принцип действия системы впрыска топлива

Воздух поступает из окружающей среды в воздушный фильтр, там он очищается от пыли и мелкого мусора. После очистки он поступает в механический воздушный расходомер. Он посредством давления поступающего воздуха осуществляет регулирование качество смеси и ее дозировку.

Далее, очищенный воздух поступает на заслонку дросселя, которая открывается посредством педали газа, акселератором. Затем во впускные каналы для разбрызгивания приготовленной смеси.

Топливо же проходит следующий путь. Из бака нагнетается насосом с давлением не менее 1,5 бар. Затем бензин поступает в аккумулятор давления, где оно сохраняется при изменении силы насоса. Потом, проходя через фильтр, поступает на дозатор, который уже отрегулирован потоком воздуха посредством корректора. А потом по отдельным каналам топливо поступает к форсункам. Дроссельная заслонка отвечает за количество топлива, поступающее в цилиндры.

Схема K-Jetronic

Весь объем воздуха, попадающий в двигатель, измеряется специальным устройством, которое называется расходомер воздуха. Он вместе с дозатором представляет собой единый функциональный блок, который называется регулятором состава топливной смеси. В нем же находится распределительный диск, называемый ротаметр. Он отклоняется под действием воздушного потока, идущего через входной патрубок. Диск имеет механическую связь посредством системы рычагов с распределительным золотником. Он, перемещаясь вверх под действием рычагов, пропускает некоторое количество бензина, которое поступает через дифференциальные клапаны в форсунки. Они уже непосредственно подают приготовленную смесь в цилиндры. Так как температура окружающей среды бывает разная, а условия работы системы постоянно меняются в зависимости от нее, то в kjetronic применяется специальное устройство, называемое регулятором управляющего давления. Для регулирования оборотов двигателя на холостом ходу используется клапан, шунтирующий дроссельную заслонку. Кроме того, для стабильного запуска мотора применяется дополнительная форсунка, которая управляется дополнительным термореле. Продолжительность ее открытого состояния зависит от температуры двигателя. При запуске мотора топливо одновременно подается во все части системы и сходится в золотнике, на верхний торец которого действует сила, поднимающая его. Именно здесь установлен механизм, который обеспечивает это регулирование.

На автомобилях с двигателями, оснащенными трехкомпонентными каталитическими нейтрализаторами выхлопных газов, устройство впрыска оснащается рядом дополнительных устройств:

  • датчик кислорода;
  • устройство управления;
  • тактовый клапан или переменный дроссель;
  • датчик положения дроссельной заслонки.

Кроме добавления всего перечисленного, были внесены изменения в устройство регулятора качества смеси. А вся система при этом стала управляться электроникой.

Как функционирует L-Jetronic: все сложное – очень просто

L-Джетроник – детище известной немецкой компании Bosch. Системы выпускаются с различной маркировкой, в зависимости от года изготовления система приобретает новейшие доработки.

Данная система устанавливается на бензиновых двигателях автомобилей. Ее основное отличие от карбюраторной системы заключается в том, что топливо принудительно впрыскивается в цилиндр или впускной коллектор.

Для этого используются форсунки, которая и осуществляет распыление под высоким давлением на топливо. Система L-Джетроник, как и прочие системы такого типа, называется инжекторной. Принцип ее работы заключается в следующем:

В каждый цилиндр силового агрегатора, при помощи форсунки впрыскивается топливо. Это система импульсной подачи топлива, которая регулируется электроникой. О ее работе мы подробнее расскажем ниже.

Выбор оптимальной системы подачи топлива

Размышляя какая разница между инжектором и карбюратором, многие автомобилисты приходят к выводу что электронная система гораздо надёжнее. Однако переоборудование любого автомобиля экономически невыгодно и приведёт только к излишним затратам. Решение о выборе более экономичной системы актуально при покупке машины. Разобраться чем отличаются инжектор и карбюратор довольно просто, и такие знания обязательно пригодятся.

Карбюратор уже отслужил свой срок на рынке современных автомобилей. Несмотря на его преимущества, применение инжектора наиболее эффективно и отвечает всем экологическим требованиям. Карбюраторные двигатели используются в основном на старых машинах, но такая технология отлично себя зарекомендовала и не нуждается в доработке. Применение инжектора имеет немалые преимущества и эта система установлена без возможности выбора в любой новой машине.

Форсунки

Форсунка представляет собой подпружиненный клапан, который открывается при определенном давлении и пропускает топливо во впускной коллектор. Можно увидеть прямую аналогию между форсункой и РСД, только РСД излишек системного давления стравливает в слив (обратку), а форсунка излишек давления открытия форсунки стравливает во впускной коллектор. Другими словами, форсунка в своем роде тоже регулятор давления.

Открываются форсунки при давлении около 3.5 атм., а закрываются при чуть более низком давлении — 3 атм.

Мнение о том, что давление открытия форсунок влияет на работу впрыска, неверно. Определяет количество топлива, прошедшее через форсунки только дифдавление, расход воздуха (через перемещение плунжера дозатора) и системное давление (см. )

Более важно, чтобы форсунки не текли при остаточном давлении (влияет на запуск на горячую, т.к. натекшее через форсунки топливо, пока двигатель заглушен, переобогатит смесь в момент запуска)

Также важно, чтобы форсунки более-менее распыляли топливо при небольших расходах (плохой распыл ухудшает смесеобразование и, следовательно, стабильность работы двигателя на ХХ, на больших оборотах плохой распыл уже не сказывается).

При обдуве воздухом топлива на выходе из форсунки улучшается смесеобразование. Подобная конструкция применяется на автомобилях AUDI.

Рисунок 5 — Форсунка с обдувом воздуха

Основное условие для успешной работы данной конструкции — это герметичность всех уплотнений. И если где-то будет подсасываться воздух, то двигатель обречен на неустойчивую работу на холостом ходу, поэтому необходимо очень тщательно проверять уплотнительные кольца, и если они вызывают подозрение, менять их на новые

Не допускаются сколы и трещины на самом стакане.
При снятии форсунок очень часто при неосторожном обращении ломают стаканы. Правильно топливные трубки откручивать сначала от дозатора, а потом аккуратно вытаскивать форсунки из коллектора вместе с трубками

Трубки от форсунок, соблюдая осторожность, откручивают потом.
Лучше выпрессовывать форсунки на еще горячем двигателе при нагретом до 80″С коллекторе.

Проверка и регулировка баланса топлива форсуночных каналов

Ниже изложенный метод проверки и регулировки был взят с мерседесовского форума
и незначительно переработан

При легком троении двигателя на холостом ходу, если компрессия и зажигание (искрообразование и свечи) в норме и подсос воздуха отсутствует, логично предположить, что количество топлива, поступающего к разным форсункам, неодинаково. Различие в количестве поступающего топлива может быть вызвано многими причинами, например засорением дозировочного отверстия. Если вы уверены, что дозатор исправен и чист, можно попытаться добиться равномерности подачи топлива к форсункам. Количество топлива, поступающего к форсункам, зависит от усилия пружин 4 () в нижних камерах дозатора. Усилие пружин можно регулировать при помощи соответствующих винтов.

Нам понадобится запасной комплект трубок от дозатора к форсункам, чтобы не гнуть свои трубки (я купил такой комплект за 200 рублей) и мерный стакан (в магазинах по покраске автомобилей стакан на 400 мл стоит 25 рублей).

  1. Отворачиваем трубки форсунок от дозатора. Устанавливаем перемычку в реле бензонасоса для принудительной работы бензонасоса. Снимаем разъем с ЭГРД.
  2. Подсоединяем запасные трубки к дозатору. Свободные концы трубок опускаем в пластиковые бутылки
  3. Нажимаем на напорный диск расходомера примерно на четверть или треть его хода и наполняем бутылки бензином так, чтобы налитое количество можно было измерить мерным стаканом. Мы добиваемся равномерной подачи на режимах, близких к ХХ.
  4. Отпускаем НД, снимаем перемычку с реле бензонасоса и меряем количество налитого бензина в каждой бутылке. Запоминаем, с какой трубки (из какого форсуночного канала) сколько бензина налилось
  5. Если количество налитого бензина в каждой бутылке сильно отличается, необходимо найти и устранить причину неисправности, но ни в коем случае не регулировать подачу бензина винтами, так как рассогласование в подаче из-за винтов не может быть большим
  6. Если количество налитого бензина в каждой бутылке не сильно, но отличается, надо снять дозатор и открутить заглушки в нижней части дозатора. Под заглушками располагаются винты регулировки пружин

    Рисунок 26 — Заглушки винтов регулировки пружин нижних камер.
    Дозатор — вид снизу

  7. Для того канала, с которого слилось больше всего бензина, винт регулировки надо немного вкрутить, для того канала, с которого слилось меньше всего бензина — немного выкрутить.
  8. Произвести еще замеры и регулировки до достижения равного количества истекаемого бензина из каждого канала.

Регулируя винтами сжатие пружин, мы регулируем дифдавление для каждого форсуночного канала дозатора (и соответственно для каждого цилиндра — подачу топлива). Каждая пружина должна оказывать давление на мембрану со стороны нижней камеры величиной 0.2 атм (см. ). Конечно, проверить это непросто, но если и будет какое-либо отклонение от заданной величины, оно компенсируется регулировкой ЭГРД. Главное, чтобы мы достигли одинаковой подачи топлива к каждой форсунке.

Другой способ регулировки баланса каналов форсунок — добиться одинакового равномерного появления топлива в форсуночных каналах при медленном нажатии на НД. Естественно, регулировку надо вести теми же винтами. В том канале, в котором топливо появилось в первую очередь, надо винт регулировки немного вкрутить, а в котором в последнюю очередь — немного выкрутить. Это более простой, но менее точный способ, так как при этом регулировка ведется, когда НД находится фактически в крайнем положении и расхода нет. Правильнее вести регулировки, когда расход не равен нулю и НД находится в «рабочем положении».

Естественно, после регулировки баланса топлива имеет смысл проверить и при необходимости отрегулировать дифдавление.

Азы теории регулирования

Мы видим в разных частях КЕ три однотипных узла — подпружиненную мембрану, регулирующую количество топлива над ней. Этот узел находится в РСД, в дозаторе (мембрана между верхней и нижней камерой) и в форсунке (правда, в ней не мембрана, но идея ее работы такая же).

В теории автоматического регулирования подобный узел называется П-регулятором, где П означает «Пропорциональный». В подобном регуляторе невозможно полностью устранить отклонение регулируемого параметра от нормы. Отклонение можно только уменьшить. Во сколько раз уменьшается отклонение, определяет т.н. коэффициент пропорциональности.

Рисунок 6 — П-регулятор давления. Сигнал в норме. Пример

Задача регулятора — обеспечить равенство заданию давления на выходе вне зависимости от изменений давления на входе.

Рисунок 7 — П-регулятор давления. Отклонение от нормы. Пример

Как видно из рисунка 7, при отклонении входного давления от задания на 1 атм, на выходе отклонение получается меньше в 10 раз, но не устраняется полностью.

Рисунок 8 — П-регулятор давления в KE-jetronic

Элементы П-регулятора в РСД показаны на рис.3. Множитель К зависит от конструктивных особенностей регулятора (в случае РСД множитель К определяет влияние зазора между шариком и серым штоком на системное давление)