Warning: include(/home/users/j/j36685780/domains/38uzorochye.ru/wp-content/plugins/psn-pagespeed-ninja/public/advanced-cache.php): failed to open stream: No such file or directory in /home/host1846916/38uzorochye.ru/htdocs/www/wp-content/advanced-cache.php on line 10

Warning: include(): Failed opening '/home/users/j/j36685780/domains/38uzorochye.ru/wp-content/plugins/psn-pagespeed-ninja/public/advanced-cache.php' for inclusion (include_path='.:/usr/local/php/php-7.4/lib/php') in /home/host1846916/38uzorochye.ru/htdocs/www/wp-content/advanced-cache.php on line 10
Двигатель внутреннего сгорания - устройство и принцип работы - avtotachki

Устройство двигателя внутреннего сгорания

Принцип работы четырёхтактного двигателя внутреннего сгорания

В подавляющем большинстве легковых автомобилей устанавливают четырехтактные двигатели внутреннего сгорания, поэтому мы и берём его за основу. Чтобы лучше понять принцип устройства бензинового ДВС, предлагаем вам взглянуть на рисунок:

Устройство двигателя внутреннего сгорания

Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск), сжимается (такт второй – сжатие) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке (НМТ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке (ВМТ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт (выпуск) работы двигателя внутреннего сгорания.

Давайте ещё раз повторим определения, а затем .

Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом, в данном случае, двигателя внутреннего сгорания.

  1. Такт первый — ВПУСК. Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
  2. Такт второй – СЖАТИЕ. Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
  3. Такт третий – РАСШИРЕНИЕ. При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
  4. Такт четвертый – ВЫПУСК. Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.

И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором также очень хорошо показан принцип работы ДВС.

Принцип действия двигателя

Устройство двигателя:

  • система зажигания обеспечивает подачу тока на свечу для получения искры;
  • система охлаждения отводит тепло от стенок цилиндра и головок, предотвращая перегрев двигателя;
  • система питания отвечает за подготовку новой порции рабочей смеси (топливо + воздух);
  • механизм газораспределения отвечает за своевременный впуск новой порции рабочей смеси, и выведение отработавших газов;
  • кривошипно-шатунный механизм преобразует движение (возвратно-поступательное) поршней во вращательное движение коленчатого вала;
  • система смазки отвечает за подачу масла к трущимся поверхностям.

Сейчас в большинстве автомобилей используется четырехтактная система сгорания для преобразования топлива в энергию. Для правильно работы двигателя компрессия в цилиндрах должна соответствовать значениям от 11 до 15.

Цикл сгорания:

  • впускается топливно-воздушная смесь (такт впуска);
  • смесь сжимается и возгорается (такт сжатия);
  • смесь сгорает и толкает поршень вниз (такт расширения);
  • продукты горения выпускаются (такт выпуска).

Внутри цилиндра двигателя расположена камера, в которую вводится смесь с воздухом (либо по отдельности), где и происходит сгорание топлива. При сгорании тепловая энергия преобразуется в механическую энергию. После, продукты сгорания выводятся из цилиндра, а на их место поступает новая порция топлива. Совокупность этих процессов является циклом работы двигателя.

Рис. [1 ]. Эпюра износа гильз цилиндров двигателей:

а – нормальная эпюра; б – со смещением пояса максимального износа при изменении режимов работы двигателя и внешних условий.

Автор работы, считает преувеличенным влияние на долговечность гильз износа на участке Sb и внешних условий эксплуатации двигателя, изменение которых сопровождается возрастанием скорости изнашивания гильз на этом участке по сравнению с участком Sa, так как износ гильзы в зоне Sa при этом не увеличивается или увеличивается незначительно. При этом абразив, вызывающий износ в зоне Sb, резко повышает количество продуктов изнашивания в работающем моторном масле даже при незначительном увеличении скорости изнашивания этого участка, поскольку его площадь намного больше площади зоны Sa.

Кроме режимов работы двигателя и внешних условий на характер износа при абразивном изнашивании также имеет значение источник проникновения абразивных частиц: от пылевых частиц, поступающих с воздухом и топливом, происходит изнашивание в первую очередь в верхней части, а в случае их попадания с моторным маслом – максимальный износ имеет средняя часть гильз цилиндров в зоне Sb и эпюра износа принимает бочкообразный характер (рис. ,а).

Влияние концентрации абразивных частиц, поступающих в цилиндры двигателя с топливом, на величину и форму эпюры износа показана на рис. ,б. В каждом конкретном варианте эксплуатации двигателя эпюра износа гильзы по образующей также принимает форму, характерную для данных условий.

                        а                                                                                      б

Рис. . Износ гильз цилиндров двигателя ЗИЛ-130 по образующей:

а) в % от максимальной величины при искусственной подаче пыли: 1-с воздухом; 2-с моторным маслом; 3-с топливом; б) при работе на бензине с различным содержанием механических примесей (после 7 тыс.км пробега): 1- 0%; 2- 13,5 г/т (0,00135%); 3- 40 г/т (0,004%); 4- средний эксплуатационный износ.

При рассмотрении системы «деталь-абразивная частица-деталь» отмечается взаимное влияние твёрдостей на износостойкость сопряжённых деталей. Из практики эксплуатации автомобильных двигателей хорошо известно, что применение хромового покрытия (до 200 мкм) рабочей поверхности поршневых колец либо повышение твёрдости гильз цилиндров (закалка их рабочей поверхности до 40-50 HRC) приводит к одновременному снижению износа и кольца, и гильз цилиндров особенно при ведущем абразивном износе. Вместе с тем, авторы работы при исследовании 50 дизелей КамАЗ-740 установили: наибольшее количество натиров (72%) даёт первое поршневое кольцо, 20% — второе и лишь 8% — маслосъёмное.

Исследования по оценке износостойкости гильз цилиндров, изготовленных из различных материалов в условиях преобладания абразивного износа показывают, что износостойкость растёт в следующем порядке: гильзы из серого чугуна, с нирезистовой вставкой, из чугунных легированных сплавов. Эти результаты свидетельствуют о том, что твёрдость не является единственной характеристикой механических свойств материалов, определяющей их износостойкость, так как твёрдость нирезиста даже несколько ниже (156-197 HB), чем у серого чугуна (180-230 HB).

Электро-двигатель

Существуют машины, которые используют в качестве исходной энергии – электричество. Наиболее популярный и близкий к автомобилю вид транспорта, работающий на электричестве – это всем известный троллейбус.

Но полноценным автомобилем его не назовешь, поскольку двигаться троллейбус может только лишь вдоль натянутых проводов, от которых он запитывается электричеством.

Но вы наверняка слышали о машинах, которые называются электромобилями. Электромобили – это автомобили, в которых в качестве силового агрегата используется электродвигатель.

Электродвигатель, как вы понимаете, работает от электрической энергии, которую он получает, как правило, от аккумуляторных батарей.

Электромобили, по сравнению с автомобилями, использующими двигатели внутреннего сгорания, имеют массу преимуществ.

Они экологичны, практически бесшумны (что не всегда плюс), быстро набирают скорость, им не нужна коробка скоростей можно даже обойтись без трансмиссии, если поставить двигатели на каждое из колес. То есть такие автомобили могли бы быть намного дешевле, чем автомобили с ДВС, если бы стали массовыми.

Но есть два существенных момента, которые очень сильно ограничивают применение электродвигателей на современных автомобилях. До сих пор не придумали аккумуляторов, которые бы могли запасти в себе достаточное количество электрической энергии.

То есть запас хода электромобиля сегодня ограничен несколькими десятками километров. Если не включать фары, магнитолу, кондиционер, то можно и до сотни километров проехать, но все равно это очень мало. Примерно в 5-6 раз меньше, чем на одной заправке бензином. Впрочем, над этим разработчики постоянно работают и возможно, что когда вы читаете эти строки, уже существует электромобиль с запасом хода более 500 км.

Но даже малый запас хода был бы не так страшен, если бы не время, требуемое на перезарядку аккумуляторов. Если заправка бензином, дизтопливом или газом занимает 5-10 минут, то аккумуляторы придется заряжать часов 12, а то и сутки.

Поэтому, пока электромобили могут использоваться лишь для непродолжительных поездок по городу, после чего всю ночь на зарядке.

Особенности

Принцип работы ДВС легковых автомобилей чаще всего основан на преобразовании энергии сгораемого бензина. Грузовики, трактора и специальная техника оборудуются в основном дизельными двигателями. Еще в качестве топлива может использоваться сжиженный газ. Дизельные двигатели не имеют системы зажигания. Воспламенение топлива происходит от создаваемого давления в рабочей камере цилиндра.

Рабочий цикл может осуществляться за один или два оборота коленчатого вала. В первом случае происходит четыре такта: впуск топлива и его воспламенение, рабочий ход, сжатие, выпуск отработанных газов. Двухтактный двигатель внутреннего сгорания полный цикл осуществляет за один оборот коленчатого вала. При этом за один такт происходит впуск топлива и его сжатие, а на втором – воспламенение, рабочий ход и выпуск отработанных газов. Роль газораспределительного механизма в двигателях такого типа играет поршень. Двигаясь вверх-вниз, он поочередно открывает окна впуска топлива и выпуска отработанных газов.

Кроме поршневых ДВС существуют еще турбинные, реактивные и комбинированные двигатели внутреннего сгорания. Преобразование в них энергии топлива в поступательное движение транспортного средства осуществляется по другим принципам. Устройство двигателя и вспомогательных систем также существенно отличается.

Конструкция поршня

Поршень двигателя имеет достаточно простую конструкцию, которая состоит из следующих деталей:

Volkswagen AG

  1. Головка поршня ДВС
  2. Поршневой палец
  3. Кольцо стопорное
  4. Бобышка
  5. Шатун
  6. Юбка
  7. Стальная вставка
  8. Компрессионное кольцо первое
  9. Компрессионное кольцо второе
  10. Маслосъемное кольцо

Конструктивные особенности поршня в большинстве случаев зависят от типа двигателя, формы его камеры сгорания и типа топлива, которое используется.

Днище

Днище может иметь различную форму в зависимости от выполняемых им функций – плоскую, вогнутую и выпуклую. Вогнутая форма днища обеспечивает более эффективную работу камеры сгорания, однако это способствует большему образованию отложений при сгорании топлива. Выпуклая форма днища улучшает производительность поршня, но при этом снижает эффективность процесса сгорания топливной смеси в камере.

Поршневые кольца

Ниже днища расположены специальные канавки (борозды) для установки поршневых колец. Расстояние от днища до первого компрессионного кольца носит название огневого пояса.

Поршневые кольца отвечают за надежное соединение цилиндра и поршня. Они обеспечивают надежную герметичность за счет плотного прилегания к стенкам цилиндра, что сопровождается напряженным процессом трения.  Для снижения трения используется моторное масло. Для изготовления поршневых колец применяется чугунный сплав.

Количество поршневых колец, которое может быть установлено в поршне зависит от типа используемого двигателя и его назначения. Зачастую устанавливаются системы с одним маслосъемным кольцом и двумя компрессионными кольцами (первым и вторым).

Маслосъемное кольцо и компрессионные кольца

Маслосъемное кольцо обеспечивает своевременное устранение излишков масла с внутренних стенок цилиндра, а компрессионные кольца –  предотвращают попадания газов в картер.

Компрессионное кольцо, расположенное первым, принимает большую часть инерционных нагрузок при работе поршня.

Для уменьшения нагрузок во многих двигателях в кольцевой канавке устанавливается стальная вставка, увеличивающая прочность и степень сжатия кольца. Кольца компрессионного типа могут быть выполнены в форме трапеции, бочки, конуса, с вырезом.

Маслосъемное кольцо в большинстве случаев оснащено множеством отверстий для дренажа масла, иногда – пружинным расширителем.

Поршневой палец

Это трубчатая деталь, которая отвечает за надежное соединение поршня с шатуном. Изготавливается из стального сплава. При установке поршневого пальца в бобышках, он плотно закрепляется специальными стопорными кольцами.

Поршень, поршневой палец и кольца вместе создают так называемую поршневую группу двигателя.

Юбка

Направляющая часть поршневого устройства, которая может быть выполнена в форме конуса или бочки. Юбка поршня оснащается двумя бобышками для соединения с поршневым пальцем.

Для уменьшения потерь при трении, на поверхность юбки наносится тонкий слой антифрикционного вещества (зачастую используется графит или дисульфид молибдена). Нижняя часть юбки оснащена маслосъемным кольцом.

Обязательный процесс работы поршневого устройства – это его охлаждение, которое может быть осуществлено следующими методами:

  • разбрызгиванием масла через отверстия в шатуне или форсункой;
  • движением масла по змеевику в поршневой головке;
  • подачей масла в область колец через кольцевой канал;
  • масляным туманом

Уплотняющая часть

Уплотняющая часть и днище соединяются в форме головки поршня. В этой части устройства расположены кольца поршня – маслосъемное и компрессионные. Каналы для колец имеют небольшие отверстия, через которые отработанное масло попадает на поршень, а затем стекает в картер двигателя.

В целом поршень двигателя внутреннего сгорания является одной из самых тяжело нагруженных деталей, который подвергается сильным динамическим и одновременно тепловым воздействиям. Это накладывает повышенные требования как к материалам, используемым в производстве поршней, так и к качеству их изготовления.

Принцип работы

Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.

Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение. 

Принцип работы четырехтактного двигателя

Такты четырехтактного двигателя

Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации

Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта)

Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

  1. На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
  2. Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
  3. Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
  4. И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.

Работа четырехтактного двигателя

По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.

При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется  большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.

Принцип работы двухтактного двигателя

Такты двухтактного двигателя

Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:

  1. В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
  2. Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.

Работа двухтактного двигателя

Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.

При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.

Преимущества и недостатки ДВС

  1. Если говорить о преимуществах двигателей внутреннего сгорания, то на первое место выйдет удобство для пользователя. За столетие бензиновой эпохи мы обросли сетью АЗС и даже не сомневаемся, что всегда будет возможность заправить машину и ехать дальше. Есть риск не встретить заправочную станцию – не беда, можно взять с собой бензин в канистрах. Именно инфраструктура делает использование ДВС таким комфортным.
  2. С другой стороны, заправка двигателя топливом занимает пару минут, проста и доступна. Залил бак – и едь себе дальше. Это не идет ни в какое сравнение с подзарядкой электромобиля.
  3. Способность служить долго при грамотном обслуживании – то, чем могут похвастаться знаменитые двигатели-миллионники. Регулярное своевременное ТО способно сохранить работоспособность мотора на очень долгий срок.
  4. И, конечно, не будем забывать про милый сердцу рев мощного мотора. Настоящий, честный, совершенно не похожий на озвучку современных электрокаров. Не зря же некоторые автоконцерны специально настраивали звук двигателей своих машин.
  1. Конечно, это низкий КПД — в пределах 20-25%. Самый высокий на сегодняшний день показатель КПД среди ДВС – 38%, который выдал двигатель Toyota VVT-iE. По сравнению с этим электромоторы смотрятся гораздо выигрышней, особенно с системами рекуперативного торможения.
  2. Второй значительный минус – это общая сложность всей системы. Современные двигатели давно перестали быть такими «простачками», как описывается в схеме классического ДВС. Наоборот, требования к моторам становятся всё выше, сами моторы – более точными и сложными, появляются новые технологии и инженерные решения. Всё это дополнительно усложняет конструкцию двигателя, и чем она сложней, тем больше в ней слабых мест.

Так что, если раньше сосед дядя Вася перебирал двигатель своей «копейки» самостоятельно, но на новеньких современных машинах вряд ли кто-то полезет в тонкую систему ДВС без специального оборудования и инструментов.

И, наконец, нефтяная эра сама по себе отходит в прошлое. Не зря же растут требования к экологической безопасности транспорта, а заодно и эффективность солнечных батарей. Да, бензиновые и дизельные моторы еще не скоро исчезнут с улиц, но уже Европа борется за внедрение электромобилей, благодаря которым человечество когда-нибудь забудет слово «бензиновый смог».

Двигатель

Устройство автомобиля невозможно представить без главного источника механической энергии, приводящего его в движение. Пока наиболее распространены двигатели внутреннего сгорания, хотя постепенно и вытесняются гибридными и электрическими разновидностями.

В каждом ДВС имеются цилиндры и поршни. В них происходит преобразование тепловой энергии, выделяемой при сжигании топлива. Данный процесс повторяется несколько сотен раз в минуту, чтобы обеспечить непрерывное и быстрое вращение коленвала. Последний передаёт крутящий момент дальше, непосредственно на приводы колёс.

Более всего распространены четырёхтактные моторы. Они названы так из-за 4-х основных процессов или тактов, происходящих в цилиндрах за один ход поршня. Сначала происходит впуск топливно-воздушной смеси в камеру сгорания, затем сжатие горючего, потом воспламенение посредством подачи искры свечой и выпуск отработанных газов. В процессе этих четырёх тактов образуется рабочий ход или крутящий момент, передаваемый через шатун на коленвал.

Виды двигателей и их отличия

Все поршневые ДВС отличаются по типу впрыска. Не так давно были популярными и карбюраторные типы зажигания, но они уступили место инжекторным или впрысковым системам.

В устройстве автомобиля для чайников инжекторные двигатели классифицируются по типу впрыска упрощённо:

  • моновпрыск или моноинжектор — применяется всего одна общая форсунка для всех цилиндров;
  • распределённый впрыск — каждый цилиндр двигателя имеет отдельную форсунку;
  • непосредственный впрыск — топливо и воздух подаются в камеру отдельно, а форсунки ставятся не над впускными клапанами, а прямо в цилиндрах.

Силовые установки принято различать по типу питания:

  • бензиновые;
  • дизельные.

По компоновке:

  • рядные — все цилиндры (количество 4 или 6) расположены на одной линии;
  • V-образные — цилиндры (количество 4, 6 или находятся в двух плоскостях;
  • оппозитные — с противоположным расположением цилиндров и поршней.

Помимо поршневых двигателей, сегодня постепенно входят в моду и другие виды агрегатов:

  • роторный на бензине — здесь поршней в цилиндрах нет, а главным элементом является ротор, вращающийся по заданной траектории;
  • гибридный — сочетает поршневой и электрический тип моторов, работает по принципу экономии горючего.