Warning: include(/home/users/j/j36685780/domains/38uzorochye.ru/wp-content/plugins/psn-pagespeed-ninja/public/advanced-cache.php): failed to open stream: No such file or directory in /home/host1846916/38uzorochye.ru/htdocs/www/wp-content/advanced-cache.php on line 10

Warning: include(): Failed opening '/home/users/j/j36685780/domains/38uzorochye.ru/wp-content/plugins/psn-pagespeed-ninja/public/advanced-cache.php' for inclusion (include_path='.:/usr/local/php/php-7.4/lib/php') in /home/host1846916/38uzorochye.ru/htdocs/www/wp-content/advanced-cache.php on line 10
Консистентная смазка для автомобиля, назначение, спецификация

Типы смазочных материалов

Содержание

Испытания на машине SKF V2F

Пластичная смазка испытывается на механическую стабильность следующим образом:
Испытательная машина состоит из железнодорожной буксы, подверженной ударной нагрузке от падающего груза. Частота падения — 1 Гц, ускорение — 12-15 g. Испытания проводятся на двух частотах вращения — 500 и 1000 об/мин. Пластичная смазка вытекает из буксы через лабиринтные уплотнения и собирается в специальном лотке. Если после 72 часов испытаний при 500 об/мин вытекло менее 50 грамм смазки, проводятся следующие 72 часа испытаний при 1000 об/мин. Если за время двойного испытания ( 72 часа при 500 об/мин и 72 часа при 1000 об/мин) вытекло не более 150 г пластичной смазки — выставляется оценка “М”. Если смазка выдержала первую часть испытаний (72 часа при 500 об/мин), но не выдержала вторую часть — выставляется оценка “m”. Если утечка составила более 50 грамм после 72 часов при 500 об/мин — выставляется оценка “неудовлетворительно”.

Таблица 3. Требования к пластичным смазкам, обусловленные условиями работы узла трения


УСЛОВИЯ РАБОТЫ УЗЛА ТРЕНИЯ

ХАРАКТЕРИСТИКИ СМАЗОЧНОГО МАТЕРИАЛА
Контактные давления Несущая способность
Рабочая температура Диапазон рабочих температур
Скорость качения Фактор скорости
Скорость скольжения Зависимость вязкости пластичной смазки от скорости сдвига
Окружающая среда:
вода
химически агрессивная
вакуум
радиация
продукты питания
Водостойкость, антикоррозионные свойства
Химическая стойкость
Работоспособность в вакууме
Радиационная стойкость
Пищевой допуск

Основными параметрами работы узлов трения являются контактные давления, рабочий температурный диапазон, скорости качения или скольжения, а так же особенности окружающей среды.

Проблемы смазывания узлов трения пластичными смазками наиболее остро стоят:

  • при низких рабочих температурах, связанных с эксплуатацией машин и механизмов в холодных климатических зонах либо в зимний период года;
  • при высоких рабочих температурах, связанных с высокой температурой окружающей среды либо с интенсивным выделением тепла в результате трения.

При низких рабочих температурах увеличивается вязкость дисперсионной фазы (базовое масло), в результате чего пластичная смазка твердеет и перестает выполнять требуемые функции. При температурах ниже -30…-50 °С должны применяться низкотемпературные смазки на маслах с невысокой вязкостью, содержащие небольшое количество загустителя.

С увеличением температуры вязкость смазки уменьшается, она становится мягче и в результате полностью растекается. Поскольку переход смазки в жидкое состояние с ростом температуры происходит постепенно, фиксированной температуры плавления для характеристики термостойкости пластичных смазок нет. Вместо этого для определения температуры перехода смазки в жидкое состояние используют понятие точки каплепадения – температуры, при которой первая капля падает через отверстие в дне чашки со смазкой при ее нагреве. Для пластичных смазок EFELE верхняя граница диапазона рабочих температур устанавливается с определенным запасом ниже точки каплепадения.

В диапазоне рабочих температур от 0…+80 °С может работать большинство пластичных смазок, не испытывая отрицательного влияния на свою структуру. При температуре до +120…+130 °С могут применяться смазки, загущенные литиевыми мылами, а так же смазки на основе комплексных мыльных, полимерных или неорганических загустителей. При температурах до +150 °С, как правило, могут применяться только смазки на основе мыльных комплексов, полимерных и неорганических загустителей. Рабочую температуру до +200…+300 °С выдерживают только смазки на основе синтетических масел с высокой термической стабильностью (например, силиконовых), загущенных полимерами или неорганическими веществами.

Важным критерием при выборе пластичной смазки являются скоростные характеристики работы узла трения.

Увеличение частоты вращения (угловой скорости) подшипника качения приводит к росту центробежной силы. Если она превышает силу, определяемую адгезией пластичной смазки, то смазка «сбрасывается» с поверхности вращающихся деталей подшипника. В этой связи для узлов трения качения выбор смазок осуществляется по предельному значению фактора скорости – расчетного параметра, определяемого как произведение среднего диаметра подшипника и скорости вращения, при котором еще обеспечивается эффективная работа пластичной смазки в узле трения.

Одной из важнейших характеристик пластичных смазок, придающих им способность выполнять функции смазочного материала, является вязкость, зависящая от скорости сдвига. При низких скоростях скольжения в узлах трения вязкость пластичной смазки может иметь очень высокие значения. Увеличение скорости скольжения приводит к увеличению скорости сдвига смазки, разрушающей ее структуру и значительно снижающей вязкость. При слишком высоких значениях скорости скольжения вязкость пластичной смазки может принимать значения, при которых смазка перестает выполнять свои функции.

Опыт эксплуатации показывает, что пластичные смазки эффективно работают при скорости скольжения 0,4…2,5 м/с (рис. 1).

Рис. 1. Выбор типа смазочного материала по значению скорости скольжения

При значениях скоростей скольжения, выходящих за пределы указанного диапазона, рекомендуется применение смазочных материалов другого типа.

Особенности конструкции узлов трения налагает на пластичные смазки дополнительные требования (табл. 4).

Состав силиконовой смазки

Для производства силиконовых жидкостей применяют следующие компоненты, это

  • масло силиконовое ПМС;
  • загустители;
  • модифицирующие присадки.

Масло для силиконовых смазок

Силиконовые масляные жидкости, применяемые для изготовления пластичных смазок, представляют собой кремнийорганические соединения. Основным компонентом таких соединений являются углеродные производные – полидиметилсилоксаны (ПМС).  Это химические вещества, не имеющие запаха, с высокой гидрофобной способностью. В качестве растворителей для разведения базовых компонентов применяют спиртосодержащие составы с добавлением ароматизирующих углеводородов.

В сравнении с другим подобными материалами, масло ПМС формирует на поверхности деталей плотную разделительную пленку, которая защищает место контакта от воздействия агрессивных сред. Сырье, применяемое для производства консистентных силиконовых смазок, характеризуется следующими свойствами:

  • большой температурный интервал (200–250 °C);
  • стабильный коэффициент вязкости;
  • не токсичны;
  • высокая температура вспышки масляных смесей;
  • не вступает в химические реакции с резиной и полимерами;
  • хорошо поддается сжатию;
  • обладает диэлектрической способностью;
  • низкой испаряемостью.

Загустители

Основным загустителем для силиконовых пластичных смазок является литиевое мыло. Применение этих веществ позволяет получать консистентные смазочные материалы с высокой термической и гидролитической стабильностью, повышенными механическими и химическими свойствами, а также с большим температурным диапазоном использования.

Верхняя температурная граница, при которой рекомендуется использовать литиевые загустители составляет 210°C. Введение, в структуру силиконовой основы, сажи, фталоцианина меди и арилзамещенных мочевин позволило расширить эти параметры до 230–310°C.

Силиконовые смазочные материалы, приготовленные на литиевых загустителях, считаются самыми востребованными в автомобильной промышленности. Нижний термический порог применения таких смазок может быть ограничен только температурными значениями границы кристаллизации полидиметилсилоксана. Верхние тепловые показатели регулируются эксплуатационными показателями смеси масла и применяемого загустителя.

Модифицирующие добавки

Набор присадок применяемый при производстве жидких масел можно смело применять и в процессе изготовления пластичных материалов, только в большей концентрации. При смешивании ингредиентов для силиконовых композиций своими руками необходимо учитывать совместимость загустителя и добавки. Стандартная универсальная смазка на литиевых загустителях включает в свой состав 0,2% антиокислителей, 0,5–1,2% – антикоррозионных присадок и до 2,8% антифрикционных и противозадирных улучшающих добавок.

Для модификации структуры загустителя, и изменения эксплуатационных свойств смазок применяют следующие химические вещества:

  • избыточные щелочи;
  • жирные кислоты;
  • глицерол;
  • вода;
  • сульфонафтенаты;

Адгезионные характеристики силиконовых материалов могут быть улучшены путем введения в смеси полимеров. Помимо этого, многие пластичные субстанции включают в свой состав дезактиваторы металлов, тефлоновые и антипенные присадки.

Общие сведения

К металлоплакирующим смазочным материалам относятся консистентные смазки и моторные масла с модифицирующими присадками. Производство пластичных субстанций основано на добавлении в синтетические или минеральные нефтяные продукты, одновременно с загустителями, металлосодержащих модификаторов (порошка меди, диоксида молибдена, олова и др).

Масляные жидкости могут преобразовывать двумя способами – как в процессе изготовления составов, так и путем введения присадок в картер двигателя. Количество улучшающих компонентов зависит назначения и условий эксплуатации смазочной смеси, обычно – это составляет 0,2–10% объема дисперсионной фазы продукта.

Введенные в масляные жидкости порошки, в зонах трения, создают тонкую металлизированную сервовитную пленку (1,5–2,0 мкм), которая способствует повышению эффекта скольжения, и снижает износ соприкасающихся деталей. Слой пленки имеет пористую структуру, невысокий показатель трения, хорошо противостоит сдвигу, и обладает высокими прочностными характеристиками. Наибольшей популярностью у автовладельцев пользуются металлоплакирующие материалы с небольшим содержанием медного или молибденового порошка.

Виды смазок и применение

Консистентные смазочные материалы широко применяются в автомобильной технике как защитные, антифрикционные и герметизирующие средства. Свойства пластичных масел во многом зависят от материала загустителя.

Самая распространенная группа смазок – это кальциевые субстанции. Представителей этой группы называют солидолами, вещества коричневого цвета, обладают удовлетворительными эксплуатационными свойствами и невысокой стоимостью. Они хорошо себя зарекомендовали как консервационные материалы, противодействуют коррозии и окислительным процессам.

Свойства комплексной кальциевой смазки значительно превосходят эксплуатационные показатели солидола. Они обладают наиболее лучшей противозадирной и термической характеристикой:

  1. Униол–1 используется как заменитель УТВ–1-13, автомобильного вазелина, ЯНЗ–2 и др.
  2. Униол–3 и 3М отличаются лучшими характеристиками, чем предыдущий образец. Они производятся на основе масла МС–20, которое славится своей морозостойкостью. Поэтому, эти составы рекомендовано использовать только в регионах с низкими температурными показателями.

Натриевые и натриево-кальциевые химические вещества отличаются высокой термической устойчивостью. В тоже время, они обладают невысокой водонепроницаемостью, растворимы в водных составах (антифриз, тосол), и не задерживаются на вертикальных плоскостях.

Смазка УТВ-1-13 – крупнозернистая мазь желтого цвета, относится к разряду жировых консталинов.

ЯНЗ-2 – пластичное масло черных или коричневых оттенков. Отличается хорошей водонепроницаемостью и высокими смазывающими параметрами.

АМ – клейкий, волокнистой структуры смазочный материал коричневого цвета. Состав изначально разрабатывался для карданных шарниров и ведущих колес автомобиля.

Литиевые пластичные смазки применяются практически во всех узлах автомобиля. Самый известный представитель этой группы – Литол-24. Универсальное консистентное масло, обладающее высокими эксплуатационными характеристиками. Благодаря этому свойству, оно может применяться как отличный заменитель любой из представленных здесь смазок.

К литиевой группе относятся:

  1. Фиол-3 – пластичная мазь зеленого цвета. Хорошо смешивается с Литолом.
  2. Фиол-1 – обладает меньшей вязкостью, прочностью, но зато имеет высокое значение морозостойкости.
  3. Фиол-2 – по своим свойствам занимает промежуточное положение между предыдущими материалами.
  4. Фиол-2М – имеет серебристо-черный оттенок, отличается присутствием в своем составе адгезионной добавки и наполнителя – сульфида молибдена (2%).
  5. Северол-1 – пластичная смазка светло-коричневого или желтоватого цвета, обладает повышенными антиокислительными и противозадирными свойствами.
  6. ЦИАТИМ-201 – мазь желтого цвета. Рекомендуется к применению в условиях низких температур и в местах контакта деталей, где нет высоких механических нагрузок.
  7. ЛСЦ-15 – незаменимое пластичное масло с антиокислительными модификаторами. Отличается высокими адгезионными качествами.

Бариевые смазочные материалы немного проигрывают литиевым композитам по термическим свойствам, но имеют высокий порог водонепроницаемости. Хорошо зарекомендовали себя комплексные бариевые композиции:

ШРБ-4 – клейкие, волокнистые субстанции желтых оттенков, характеризуется повышенными антикоррозионными характеристиками, не конфликтуют с резиновыми и полимерными комплектующими.

ШРУС-4 – смазки, разработанные исключительно для шарнирных соединений легкового транспорта.

Смазки на основе алюминиевых производных считают прорывом в области консистентных материалов. При равной стоимости с кальциевыми аналогами, они показывают высокие химические, механические, адгезионные и водозащитные свойства.

Углеводородные пластичные масла отличаются высокой консервационной способностью. ВТВ-1 – смазка относится к промышленным вазелинам, не растворим в водных композициях, прочно держится на вертикальных металлических поверхностях, обладает повышенной водостойкостью и морозоустойчивостью. Материал рекомендуется для обслуживания автомобильных аккумуляторных батарей.

Силиконовые смазки – водостойкие, морозоустойчивые пластичные смеси. Производство таких материалов основано на применении в качестве загустителей кислородосодержащих кремнийорганических соединений. Незаменимы в местах присутствия резиновых и полимерных деталей.

9.2. Классификация смазочных материалов

Наиболее широко в технике используются жидкие и пластичные смазочные материалы. Менее распространены твёрдые и газообразные смазочные материалы.

Пластичные смазочные материалы применяют для смазывания подшипников качения при частоте вращения до 3000 об/мин. и температуре до 100 °С. Большая часть подшипников качения (до 90%) смазывается этими материалами.

Преимущества пластичных смазок:

  • простая и дешевая конструкция подшипниковых узлов;
  • лучшее уплотнение против проникновения влаги и загрязнения из внешней среды.

Жидкие масла применяются при высоких частотах вращения, превышающих допустимые для смазывания пластичной смазкой, а также при необходимости отвода тепла от узлов механизма. Используются также при необходимости смазывания ряда узлов: подшипников, уплотнений, зубчатых колёс.

Твёрдые смазочные материалы применяют в виде порошков или покрытий. Это графит, дисульфид молибдена, имеющие чешуйчатое строение и малые усилия при смещении слоев относительно друг друга. Применяются при отрицательных температурах и при температурах более 100 °С.

Маркировка пластичных смазок

Маркировка пластичных смазок обозначается буквами в следующем порядке:

  1. Область применения:
    • У – универсальная;
    • И – индустриальная;
    • П – прокатная;
    • А – автотракторная;
    • Ж – железнодорожная;
  2. Наименование группы (для универсальных смазок):
    • Н – низкотемпературная;
    • С – среднеплавкая;
    • Т – тугоплавкая;
  3. Марка и специфические свойства:
    • М – морозостойкая;
    • В – влагостойкая;
    • З – защитная;
    • К – канатная.

Примеры маркировки:

  • смазка УНЗ (универсальная, низкоплавкая, защитная);
  • смазка УСС-1 (универсальная, среднеплавкая, синтетическая).
< 5.1. Виды трения 5.3. Пластичные смазочные материалы (особенности, способы подачи и контроля) >

5
2
голоса

Рейтинг статьи

Роль пластичной смазки в работе подшипника

Пластичные смазки, используются повсеместно. Они обслуживают промышленные станки и конвейеры, сельскохозяйственную технику и городской электротранспорт, подшипниковые узлы, работающие на предельных скоростях и при высоких температурах

Подобные условия эксплуатации диктуют особое внимание к качеству продукта, соответствию всех его характеристик ГОСТу и условиям использования. Пластические смазки позволяют экономить на смазочном материале и успешно применяются как закладные и консервационные, обеспечивая герметичную защиту узла

Свойства смазки определяют компоненты, которые входят в её состав: масло, загуститель, добавочные модифицирующие присадки.

Одним из важнейших условий работы подшипника является правильная его смазка. Недостаточное количество смазочного материала или неправильно выбранный смазочный материал неизбежно приводит к преждевременному износу подшипника и сокращению срока его службы.

Пластичная смазка определяет долговечность подшипника не в меньшей мере, чем материал его деталей. Особенно возросла роль смазки с повышением напряженности работы узлов трения: с повышением частот вращения, нагрузок и в первую очередь температуры (наиболее значительного фактора, обусловливающего долговечность смазочного материала в подшипнике).

Пластичная смазка в подшипниковых узлах выполняет следующие основные функции:

  • образует между рабочими поверхностями необходимую упруго гидродинамическую масляную пленку, которая одновременно смягчает удары тел качения о кольца и сепаратор, увеличивая этим долговечность подшипника и снижая шум при его работе;
  • уменьшает трение скольжения между поверхностями качения, возникающее вследствие их упругой деформации под действием нагрузки при работе подшипника;
  • уменьшает трение скольжения, возникающее между телами качения, сепаратором и кольцами;
  • служит в качестве охлаждающей среды;
  • способствует равномерному распределению тепла, образующегося при работе подшипника, по всему подшипнику и предотвращает этим развитие высокой температуры внутри подшипника;
  • защищает подшипник от коррозии;
  • препятствует проникновению в подшипник загрязнений из окружающей среды.

Технология производства и состав

С точки зрения физических свойств, пластичные смазки, это дисперсия твердых загустителей в жидкой основе. Причем загуститель добавляется настолько высокоструктурированный, что достаточно небольшого процента: не более 10%-15%.

Стандартный состав подобных материалов, следующий:

Основа

Жидкая среда, представляет собой обычное нефтяное либо синтетическое масло, которое получают по тем же технологиям, что и обычные материалы.

Для изготовления сложных и дорогих составов исходные основы могут смешиваться, согласно техническому заданию разработчика. Объем базового жидкого масла: 70%-90%.

Последний пункт особенно важен для повышения у готового продукта антиокислительных свойств. Органические пластичные смазки для автомобилей применяются в несильно загруженных узлах, работающих на невысоких скоростях.

Синтетическая основа, как правило, кремнийорганическая. На ее базе создаются масла для работы в нагруженных скоростных подшипниках, а также редукторах, работающих на высоких оборотах.

К этой категории относятся и ШРУСы. Пластичные смазки для подшипников могут быть сменными, или закладываются один раз при производстве.

Загуститель (10%-15%)

Он не просто добавляется в жидкую основу, для получения однородного состава требуется определенная температура в процессе смешивания, и специальные миксеры.

Затем состав охлаждается до температуры окружающей среды, и после этого физико-химические свойства пластичных смазок не меняются. Разумеется, при соблюдении температурного режима эксплуатации.

В качестве загустителя используются высокомолекулярные соли жирных кислот (более привычное определение – мыло). В составах премиум класса применяются твердые углеводороды, а также неорганические соединения (полимеры, карбамиды, и пр.)

Присадки

Как и любой другой продукт, пластичная смазка содержит присадки. Они улучшают свойства, если базовые характеристики не удовлетворяют заказчика.

Набор свойств типичный:

  • противоизносные (противозадирные);
  • защита от коррозии;
  • соединения, препятствующие окислению самого продукта;
  • повышающие адгезию;
  • антифрикционные.

Состав наполнителей (10%-20%): тальк, графит, медный порошок мелкого помола, дисульфид молибдена, слюда, и пр.

Основные показатели качества смазок.

  • Пенетрация (проникновение) – характеризует консистенцию (густоту) смазки по глубине погружения в нее конуса стандартных размеров и массы. Пенетрация измеряется при различных температурах и численно равна количеству миллиметров погружения конуса, умноженному на 10.
  • Температура каплепадения – температура падения первой капли смазки, нагреваемой в специальном измерительном приборе. Практически характеризует температуру плавления загустителя, разрушения структуры смазки и ее вытекания из смазываемых узлов (определяет верхний температурный предел работоспособности не для всех смазок).
  • Предел прочности на сдвиг – минимальная нагрузка, при которой происходит необратимое разрушение каркаса смазки и она ведет себя как жидкость.
  • Водостойкость – применительно к пластичным смазкам обозначает несколько свойств: устойчивость к растворению в воде, способность поглощать влагу, проницаемость смазочного слоя для паров влаги, смываемость водой со смазываемых поверхностей.
  • Механическая стабильность – характеризует тиксотропные свойства, т.е. способность смазок практически мгновенно восстанавливать свою структуру (каркас) послу выхода из зоны непосредственного контакта трущихся деталей. Благодаря этому уникальному свойству смазка легко удерживается в негерметизированных узлах трения.
  • Термическая стабильность – способность смазки сохранять свои свойства при воздействии повышенных температур.
  • Коллоидная стабильность – характеризует выделение масла из смазки в процессе механического или температурного воздействия при хранении, транспортировке и применении.
  • Химическая стабильность – характеризует в основном устойчивость смазок к окислению.
  • Испаряемость – оценивают количество масла, испарившегося из смазки за определенный промежуток времени, при нагреве до максимальной температуры применения.
  • Коррозионная активность – способность компонентов смазки вызывать коррозию металла узлов трения.
  • Защитные свойства – способность смазок защищать трущиеся поверхности металлов от воздействия коррозионно-активной внешней среды (вода, растворы солей и др.).
  • Вязкость – определяется величинами потерь на внутреннее трение в смазке. Фактически определяет пусковые характеристики механизмов, легкость подачи и заправки в узлы трения.

Читать также: Название мастерской по дереву

Пластичные смазки по консистенции занимают промежуточное положение между маслами и твердыми смазочными материалами (графитами).

Несмотря на отсутствие в качестве критериев разбивки на классы других характеристик смазок, эта классификация признана основополагающей во всех странах. Некоторые производители указывают в документации не только класс смазки, но и уровень пенетрации.

Основные свойства пластичных смазок

Свойства пластичных смазок несколько отличаются от свойств жидких трансмиссионных и моторных масел. Для жидких фракций характерны следующие качества:

  1. Вязкость.
  2. Давление.
  3. Температурный диапазон.
  4. Моющая способность (вывод продуктов износа).
  5. Окислительная, коррозионная и термическая стабильность.
  6. Способность масляной жидкости создавать на границе раздела прочную защитную пленку.
  7. Низкий показатель вспениваемости.
  8. Малая испаряемость.

Эксплуатационные требования к пастообразным смазкам нужно рассматривать гораздо шире. Технические характеристики жидких масел в основном направлены на снижение трения и износа, и эти свойства зависят от химической структуры основы и пакета модифицирующих присадок.

Свойства пластичных смазок и их назначение определяется маркой базового масла, его вязкостью, типом загустителя, способом смешивания, природой наполнителя, химическим составом присадок и их принципом действия.

Основные показатели качества, влияющие на эксплуатационные характеристики пластичных масляных смесей:

  1. Коэффициент трения и величина износа при использовании пластичных смазок – подчиняется индексу вязкости и сорту базовых масел.
  2. Нагрузочная способность (несущая) смазки определяется возможностью масляного материала удерживаться длительное время на границе раздела трущихся поверхностей, невзирая на термические и механические воздействия.
  3. Устойчивость к вибрации. Вибрация возникает в роликовых или игольчатых подшипниках ходовой части и трансмиссии автомобиля.
  4. Стабильность коллоидной структуры смазочной смеси – это способность мази не расслаиваться в процессе работы и хранения. Слишком большое выделение жидкого компонента может привести к твердению загустителя, что отрицательно скажется на функциональных способностях смазки. Коллоидная стабильность масла зависит от структуры пространственного каркаса, консистенции и состава дисперсионной фазы.
  5. Адгезия характеризует способность материала прочно схватываться с металлическими поверхностями. Липкость смазки оказывает влияние на устойчивость масляного покрытия в зонах контакта трущихся деталей.
  6. Подвижность масляного слоя играет важную роль в смазке вращающихся поверхностей. Во время работы механизмов происходит выдавливание материала на поверхность трущихся деталей. Способность смеси быстро возвращаться в стандартное положение и характеризует подвижность продукта.
  7. Тиксотропия определяется способностью пластичного состава воссоздавать структурные соединения, которые были разрушены под воздействием механических нагрузок.
  8. Предел текучести оценивает возможности мазей сохранять и восстанавливать свою консистенцию на вертикальных плоскостях и поверхностях вращающихся деталей. Величина сдвига, при которой смазка начинает переходить из пластичного состояния в жидкое, называется пределом или границей текучести.
  9. Динамической вязкостью называется величина соотношения между силой сдвига и скоростью деформации. Показатели вязкости зависят от параметров базовой субстанции и могут изменяться при увеличении или уменьшении скорости и температуры деформации.
  10. Химическая устойчивость – это возможность смазочного материала противостоять окислительным реакциям при повышении температуры, в процессе взаимодействия масляного покрытия с кислородом воздуха.
  11. Водостойкость – способность смазки защищать трущиеся поверхности от вредного воздействия влаги. В случае соединения масляной пасты с водой – не должна меняться консистенция, смазочная способность и липкость рабочей смеси.

Эксплуатационные свойства

Условия эксплуатации современных автомобилей связаны с увеличением скоростного режима. Изменение скоростных характеристик вызывает большие механические и термические нагрузки. Существующие органические и неорганические модификаторы не всегда способны оказать должное воздействие. Идеальным решением для стабилизации рабочих процессов в двигателе внутреннего сгорания являются металлоплакирующие смазочные материалы.

В случае введения в масляные жидкости металлизированных добавок тепловой баланс мотора снижается на 30–50°C, а КПД силового агрегата повышается на 3–5%. Такой положительный результат связан с формированием на трущихся парах сервовитного слоя, который своим присутствием сокращает силы трения между компрессионными кольцами и стенками цилиндров.

Настоящий эффект помогает получить следующие преимущества, это:

  • экономия моторного масла;
  • снижение потребления топлива на 10%;
  • уменьшение себестоимости капремонтов;
  • снижение затрат на покупку запчастей;
  • увеличение производительности двигателя на 25%.

Применение металлоплакирующих смазок позволяет улучшить технические характеристики моторных масел:

  1. Получить возможность смазывания сильно изношенных узлов трения.
  2. Увеличить срок службы трущихся деталей.
  3. Снизить шум от работы двигателя.
  4. Повысить адгезионные свойства.

Адгезия для консистентных смазок играет большую роль во время нанесения пластичных составов на вертикальные и наклоненные плоскости. Недостаточная величина коэффициента схватывания материала приведет к преждевременному сползанию масла с металлических поверхностей.

Чем удалить силиконовую смазку?

Силиконовую смазку, случайно попавшую на участки, не требующие обработки, достаточно сложно удалить. С помощью ветоши или салфетки она только растирается по поверхности, поэтому к помощи этих материалов прибегать не следует.

Применение растворителей не гарантирует положительного эффекта и может усугубить ситуацию. Особенно остро ощущают это водители автомобилей. Даже капля силиконовой смазки, попавшая на лобовое стекло, образует разводы, которые в темное время суток мешают нормальной видимости, а в свете встречных фар сводят ее практически к нулю.

Современный рынок специальных материалов предоставляет возможность использовать специализированные средства для смывания силикона. Самыми эффективными считаются промышленные очистители. Они гораздо эффективнее бытовых растворителей, однако подходят не для всех смазок и поверхностей. Поэтому, нанося смазку, будьте внимательнее.

Консистентная смазка, что это такое?

Иное наименование: пластичная смазка. Представляет собой дисперсную смесь жидкой классической основы с загустителем, удерживающим консистенцию при определенных (рабочих) температурах.

Что такое консистентная смазка с точки зрения агрегатного состояния? Ее нельзя отнести ни к жидкостям, ни к твердым предметам. Это мазеобразное вещество с отличной адгезией (достаточно липкое, чтобы удерживаться на необработанных поверхностях).

Консистентная смазка под микроскопом

До определенного объема (или толщины слоя) смазка удерживается на поверхности детали в любых положениях: горизонтальное, вертикальное.

Наибольший интерес представляет переходный период агрегатного состояния. Под нагрузкой, непосредственно в зоне контакта обработанных деталей, смазка переходит в жидкое состояние, равномерно распределяясь по поверхности.

В состоянии покоя, субстанция сохраняет первоначальную форму, и не удаляется из рабочей зоны самостоятельно. Так же точно ведет себя сливочное масло при комнатной температуре.

При намазывании на хлеб – состав растекается, как жидкость. Стоит прекратить воздействие – масло остается в той же форме, в которой было нанесено.

В качестве примера, посмотрим, как работает смазка консистентная для подшипников. Даже если сепараторы не закрыты кожухом (открытый подшипник), состав остается в рабочей зоне, как при работе узла, так и в состоянии покоя.
А в точке касания роликов (шариков) и обоймы, густота сменяется на жидкость, и обеспечивает надежное антифрикционное покрытие.

При этом стоит хоть капле смазки выдавиться из зоны работы, она моментально фиксируется, и не разбрызгивается за пределы агрегата. При отсутствии загустителя, масло просто вытекло бы из сепаратора подшипника.

Производство подобных составов – это целая индустрия. Например, Exxon Mobil Corporation выпускает консистентную смазку Mobil для подшипниковых заводов: она закладывается в обойму прямо на конвейере.

Нефтяные концерны постоянно совершенствуют химический состав, улучшая характеристики и потребительские свойства пластичной смазки.

Область применения

Область применения пластичных смазок неограниченная. Сфера применения напрямую зависит от необходимых свойств. Консистентная смазка для авто широко применяется для смазывания узлов и механизмов, обычно для защиты поверхностей трения. Наиболее известным можно считать Солидол. Число узлов в автомобиле, обслуживание которых необходимо, равняется примерно 30. Практически 50% всех производимых смазок предназначены для авторынка.

В промышленности ее использование можно встретить в подшипниках качения, срок службы которых напрямую зависит от типа. Также они применятся в металлургии, их использование обеспечивает беспрерывную работу механизмов. В горной промышленности, она необходима для обслуживания экскаваторов, самосвалов и транспортных конвейеров. В железнодорожной сфере она применяется для обслуживания системы привода, тягового двигателя и буксовых подшипников.

Особое применение она нашла в пищевой промышленности, для чего был разработан ряд смазок, соответствующих определенным требованиям. Они должны быть абсолютно безопасными для людей, при контакте с пищевыми продуктами, не вступать с ними в реакцию, а также разлагаться со временем.

Для текстильной промышленности разработан особый тип, на основе белых масел с водорастворимыми добавками. Это необходимо в тех случаях, когда ткань требуется очистить от следов.

Некоторые типы можно использовать для обслуживания пластиковых механизмов, имеющих особые требования, так как они слишком чувствительны к различным химическим веществам.

Учитывая разнообразие типов и сфер применения, выбор подходящей консистентной смазки, даже у неопытного пользователя, не составит труда.